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Polymer dispersed liquid crystals are a useful model system for studying the relationship between
surface topology and defect structures. They are comprised of a polymer matrix with suspended spherical
nematic drops and are topologically constrained to host defects of an elementary hedgehog charge per
droplet, such as bulk or surface point defects or closed disclination loops. We control the genus of the
closed surfaces confining such micrometer-sized nematic drops with tangential boundary conditions for
molecular alignment imposed by the polymer matrix, allowing us to avoid defects or, on the contrary, to
generate them in a controlled way. We show, both experimentally and through numerical modeling, that
topological constraints in nematic microdrops can be satisfied by hosting topologically stable half-integer
bulk defect lines anchored to opposite sides of handlebody surfaces. This enriches the interplay of
topologies of closed surfaces and fields with nonpolar symmetry, yielding new unexpected configurations
that cannot be realized in vector fields, having potential implications for topologically similar defects in
cosmology and other fields.
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Topological defects are key to many physical phenomena
and theories [1–12]. Liquid crystal (LC) defects [13] have
been used extensively to model the behavior of topologi-
cally analogous defects in other physical systems, including
cosmic strings in early Universe cosmology [11,12]. On the
other hand, LC defects are often undesirable in practical
applications such as displays and electro-optic devices,
which were driving the exploration of conditions under
which topological defects spontaneously appear and anni-
hilate as well as how these can be controlled by fields [14].
Polymer dispersed LCs (PDLCs) have emerged as a
technologically important composite system in which
defects are inevitable due to spherical droplet confinement
of the nematic in the solid polymer matrix [14]. In this
system, defects are dictated by topological theorems
[15,16] governing interplay between topologies of confin-
ing droplet surfaces and nematic director field nðrÞ, which
describes spatially varying local average orientation of
anisotropic LC molecules.
In this Letter, we control the topology of closed surfaces

confining nematic drops in a polymer matrix. This allows
us to either avoid defect formation for drops of genus g ¼ 1
or to generate defects of well-defined type in drops of
g > 1, giving origins to topological PDLCs (TPDLCs). By
means of three-dimensional (3D) nonlinear optical imaging
[17] and numerical minimization of the Landau–de Gennes

free energy [13,14], we show that the nontrivial confine-
ment geometry and topology of drops [18–22] prompt the
formation of topologically stable line defects that cross the
entire handlebody-shaped volume and pin to surfaces with
tangential boundary conditions. This is in strong contrast
to what occurs in spherical nematic drops [14], in large
millimeter-sized drops with handles [24], and in all
physical fields in contact with closed surfaces of different
genus probed so far [15]. Using simple analytical energetic
and topological analysis, we explain observed director and
defect configurations and how they are selected from a host
of possible ways of satisfying topological constraints
dictated by mathematical theorems. This is consistent with
numerical modeling, providing insights into how new
topology-controlled structures in TPDLCs can be used in
applications and as model systems.
To create TPDLCs, we first fabricated handlebody-shaped

silica microstructures using photolithography [16]. Norlin
Optical Adhesive (NOA63) was then squeezed with the
substrate containing these silica microstructures. Desired
micrometer-sized polymer confinement structures were
then obtained using replica molding [18]. The polymer
was cured using the OmniCure S2000 illumination system
(Lumen Dynamics) by high-intensity 320-to 400-nm UV
radiation for 15–30 seconds. After curing, the polymer
sheet was peeled off to leave the desired surface topography

PRL 112, 197801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
16 MAY 2014

0031-9007=14=112(19)=197801(5) 197801-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.197801
http://dx.doi.org/10.1103/PhysRevLett.112.197801
http://dx.doi.org/10.1103/PhysRevLett.112.197801
http://dx.doi.org/10.1103/PhysRevLett.112.197801


on one of its sides. We also fabricated flat thin polymer
microfilms by curing NOA63 between two flat substrates at
the same illumination. To create TPDLC films containing
nematic drops, we infiltrated a room-temperature nematic
mixture E31 (from EM Chemicals) into a gap between a
flat polymer sheet and the film with microstructures and
pressed the two together as well as sealed by additional
UV curing. This procedure yields polymer films containing
LC drops with g ¼ 1–5 and with rounded-square cross
sections [16].
3D imaging was performed with three-photon excitation

fluorescence polarizing microscopy (3PEF-PM) based on
an inverted microscope IX 81 (Olympus), a tunable
Ti-sapphire oscillator (680–1080 nm, Coherent) emitting
140-fs pulses at a repetition rate of 80 MHz, an
oil-immersion ×100 objective with a numerical aperture
of 1.4, and a photomultiplier tube detector H5784-20
(Hamamatsu) [17]. Submicron resolution along the micro-
scope’s axis was enabled by the nonlinear nature of optical
excitation. The detected 3PEF-PM intensity exhibited a
strong (∝cos6θ) dependence on the angle θ between nðrÞ
and the linear polarization of excitation light, allowing
reconstruction of complex nðrÞ inside the drops [17,19].
Using 3PEF-PM images obtained for different polarizations
of excitation light, we have constructed 3D representations
of nematic field configurations and defects. We also probed
nðrÞ by a conventional polarizing optical microscopy
(POM) [14]. TPDLCs were modeled by numerical mini-
mization of the Landau–de Gennes free energy [20] with an
additional tangentially degenerate surface anchoring term
[21]. The total free energy was then minimized numerically
for experimental material and geometric parameters [22],
as described in the Supplemental Material [23].
Figure 1 shows an array of torus-shaped drops of g ¼ 1

suspended in a polymer matrix. Most of them contain
defect-free concentric nðrÞ, as expected for the confine-
ment surface with Euler characteristic χ ¼ 2 − 2g ¼ 0.
Interestingly, unlike in millimeter-large g ¼ 1 drops [24],
our field configurations contain no detectable double twist
(Fig. 1) that could potentially originate from the saddle-
splay term of free energy. We attribute this to the rounded-
square cross section of the torus that hinders formation of
double-twist configurations, which are incompatible with
the square cross section because additional distortions
would have to be introduced to accommodate such struc-
tures. In addition to defect-free configurations, droplets
containing pairs of self-compensating defects [Figs. 1(a)
and 1(b)] are occasionally observed too, in agreement with
numerical calculations [Figs. 1(f)–1(h)].
Nematic drops with g > 1 are expected to host topo-

logical defects [15]. The Poincare-Hopf theorem [15]
requires that the winding number s of defects at the
LC-polymer interface adds to s ¼ χ ¼ 2 − 2g, where s is
defined as the number of times nðrÞ rotates around the
two-dimensional defect as one circumnavigates it once.

However, topological theorems do not prescribe particular
ways in which this constraint should be satisfied, e.g., by
means of point or line defects or through the defects of a
particular s. Furthermore, the LC director has a nonpolar
symmetry allowing half-integer s of defects, enriching the
interaction between topologically nontrivial closed surfaces
and nðrÞ as compared to that of vector fields. Minimization
of the total free energy of drops is a mechanism of selecting
stable and metastable states from a host of configurations
satisfying topological constraints. Global and local minima
of the free energy correspond to topologically constrained
structures found in TPDLC drops. In high-genus drops,
most defects, especially the ones required by topology, tend
to localize in junction regions between tori (Figs. 2–4).
What is interesting is that, unlike in the case of much larger
drops with handles [24], we observe no boojums (surface
point defects), but rather half-integer line defects spanning

FIG. 1 (color online). TPDLC with g ¼ 1 nematic drops.
(a) and (b) POM micrographs obtained (a) without and (b) with
an additional phase retardation plate. Polarizer and analyzer
orientations are shown using white double arrows, and the slow
axis of the phase retardation plate is shown by a blue double
arrow. (c) and (d) 3D representation of nðrÞ at the surface of a
g ¼ 1 drop based on (c) numerical modeling and (d) experiments,
with the color-coded scheme of azimuthal orientations shown in
the inset of (e). (e) Computer-simulated nðrÞ of a defect-free
equilibrium configuration. (f)–(h) nðrÞ in the vicinity of self-
compensating defects found in metastable states of some drops as
depicted (f) at the LC-polymer interface, (g) in drop’s interior,
and (h) in a plane intersecting the defect lines. Disclinations are
shown as red tubes and filled circles representing regions of
reduced scalar order parameter.
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through the entire thickness of drops. This can be seen, for
example, by taking depth-resolved 3PEF-PM cross sections
at different directions of linearly polarized excitation light
[Figs. 3(a)–3(d)]. Similar evidence is provided by both
experimental and numerically simulated color-coded 3D
representations of nðrÞ shown in Figs. 2(c), 2(d), 2(i),
3(j), 3(k), 4(b), 4(c), and 4(j), which indicate the presence
of line defects ending at opposite sides of drops. By varying
perspective views on such 3D representations, we confirm
that defects in the intertori junctions are all half-integer
singular lines pinned to opposite handlebody surfaces (being
topologically stable defect lines, they cannot interrupt in the
LC bulk). Some of the drops contain the minimum numbers
of half-integer defects needed to satisfy topological con-
straints on the net winding number s ¼ χ. For example,
g ¼ 2 drops tend to have two s ¼ −1=2 bulk defect lines
spanning the droplet’s thickness [Figs. 2(a)–2(f)]. Drops
with g ¼ 3 have at least four such defects (Fig. 3); g ¼ 4
drops have at least six, and g ¼ 5 drops have at least eight
disclinations in the junction region (Fig. 4).

In addition to topologically required ones, pairs of
self-compensating defect lines often appear [Figs. 2(g)–2(i)].
Theseadditional self-compensatingpairsofdefects [depicted in
Figs. 1(f)–1(h) by thin red tubes with reduced scalar order
parameter] connect flat regions of surfaces of the rounded-
square cross sections at 90° with respect to each other. Such
defect lineswould have to extend in length to annihilate, which
would increase their energetic cost up until annihilation,
resulting in their metastability. Neglecting differences in
Frank elastic constants, their line tension (free energy per unit
length) can be estimated as Td ¼ ðπ=4ÞK lnðL=rcoreÞ þ Tcore

FIG. 2 (color online). Nematic g ¼ 2 drops. (a) and (b) POM
micrographs obtained (a) without and (b) with an additional
phase retardation plate. (c) and (d) 3D representation of nðrÞ at
the surface of a g ¼ 2 drop based on (c) numerical modeling and
(d) experiments. The color-coded scheme of azimuthal orienta-
tions is shown in the inset of (c). (e) and (f) Nematic configu-
rations and defects at the junction of two tori, with (e) nðrÞ at the
LC-polymer interface depicted using rods and the line defect
cores in the bulk of the g ¼ 2 drop shown using regions of
reduced scalar order parameter. (g) and (h) A metastable
configuration with a pair of additional self-compensating defects
probed using POM (g) without and (h) with an additional phase
retardation plate. (i) The corresponding experimental 3D repre-
sentation of nðrÞ at the surface of a g ¼ 2 drop. (j) nðrÞ in the
vicinity of a defect in a midplane of a g ¼ 2 drop.

FIG. 3 (color online). Nematic g ¼ 3 drops. (a)–(d) 3PEF-PM
images obtained for a midplane of the handlebody-shaped drops
at different linear polarizations of excitation light (white double
arrows). (e–i) Optical micrographs of two different g ¼ 3 drops
obtained (e) without polarizers, (f) and (h) between crossed
polarizers, and (g) and (i) between crossed polarizers and with an
additional phase retardation plate. (j) and (k) 3D representations
of nðrÞ at the LC-polymer interface obtained (j) by numerical
modeling and (k) experimentally; the color-coded scheme of
azimuthal orientations is shown in the inset. (l) and (m) Defect
lines at tori junctions and (m) nðrÞ shown for one of them.
(n) Co-existence of a line defect at the triple junction with
boojums in other locations of a larger drop. The red tubelike
defect regions are defect cores with reduced scalar order
parameter.
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[13,20], whereK is an average elastic constant,L is the system
size, rcore andTcore are the radius and energy of the defect core.
Assuming an isotropic (melted) core, Tcore ¼ πK=4 and
rcore∼10 nm. For K ¼ 10 pN, one finds Td ¼ ð60–75Þ pN.
Stretchingsuchadefect lineby100nmincreases freeenergyby
∼10−17 J,muchlarger thanthermalenergyat roomtemperature
so that the defect annihilation within these pairs cannot
be thermally activated. Self-compensating defect lines are bent
toward each other as arches in diametrically opposite corners
of the square cross section [Figs. 1(f)–1(h)],which is becauseof
the competition between the energetic cost of extending defect
lengths and the energetic benefit of reducing strong elastic
distortions in between the defect lines of opposite s.Within the
self-compensating pairs, the shorter and longer defects have
winding numbers of s ¼ −1=2 and s ¼ 1=2, respectively
[Fig. 1(g)]. This is caused by their different line tensions and
surface energies associated with the mismatch between their
bulk fielddistributions andboundaryconditions.Byquenching
the samples from isotropic phase multiple times in both
experiments and modeling, we have verified that the location
of defects is not linked to surface imperfections. Although
many defects appear immediately following a temperature
quench as the systemcools from the isotropic to nematic phase,
mostofthemannihilate, leavingthetopologicallyrequiredones,
with occasional metastable structures [Figs. 1(f)–1(h)].
Only point defects, including surface boojums and bulk

hedgehogs, or closed disclination loops topologically
equivalent to them have been observed and modeled
theoretically in g ≥ 0 nematic drops [24–27]. We show
that closed g > 1 surfaces can also generate topology-
satisfying defect lines pinned to opposite sides of droplet

surfaces and running through their bulk. These findings
show equivalence of surface-pinned line defects and
boojums in such confinement geometries. In principle,
topological constraints in spherical drops with tangential
anchoring could be also satisfied by half-integer droplet-
crossing disclinations with ends pinned to surfaces, but
such structures have never been observed due to their high
energetic cost. For g > 1, however, defect lines are key to
realizing equilibrium structures and have well-defined
locations in intertori junctions [Figs. 2(e), 2(f), 2(j), 3(l),
3(m), 4(d), and 4(e)]. Their appearance is unrelated to the
core structure of point defects as the size of such ringlike
cores [22] is of the order of a coherence length (∼15 nm).
Our bulk-crossing defect lines are observed in experimental
and numerical minimum-energy structures for g > 1 drops
with the size of 65–1000 nematic coherence lengths. In the
largest 15-μm droplets that we studied, boojums and half-
integer defect lines coexist because they correspond to
lower free energy depending on locations of these defects
within the drops. For example, the defect lines going
through the central junctions of g ¼ 3 handlebody
[Fig. 3(m)] are stable even in these drops while other
defects transform to boojums [Fig. 3(n)]. Certainly, if the
droplet size increases to the millimeters [24], one can
expect that only boojums would be stable because of the
lower free energy of structures to which they correspond
(although half-integer defect lines may still be found as
metastable states).
Although the Poincare-Hopf theorem predicts defects in

fields on closed surfaces, implications of the nonpolar
nature of nðrÞ as compared to vector fields remained
unknown. Prior studies of millimeter-sized drops seemed
to indicate that it might be inconsequential, as the observed
boojums had integer s, as expected for vector fields. We
show that the nonpolar nature of nðrÞ allows for satisfying
topological theorems in an entirely different way, through
the appearance of half-integer defect lines, a scenario that
cannot be realized in media with vector fields and that
(surprisingly) has never been considered experimentally or
theoretically. This may have important implications for
other branches of science, where fields are also nonpolar
but experimental insights are less available (e.g., cosmic
strings are topologically similar to nematic defect lines of
s ¼ � 1=2). It was the microconfinement that led to this
finding because these novel structures with half-integer
defects are energetically unstable in millimeter-sized drop-
lets explored before [24].
Soft lithography allows for mass fabrication of TPDLCs.

By forming multilayer films, one may design TPDLCs
with 3D-periodic arrays of topologically nontrivial drops.
In addition, holographically guided polymer-LC phase
separation during polymerization may be also used to
form droplet structures with g ≥ 1 in a scalable manner
[14]. On the other hand, two-photon photopolymerization
may be exploited to obtain drops with even more

FIG. 4 (color online). Nematic g ¼ 4 and g ¼ 5 drops. (a) POM
micrograph and (b) and (c) 3D nðrÞ for two different g ¼ 4 drops.
(d) and (e) the corresponding numerical results depicting (d) defect
lines in the junction regions and (e) nðrÞ at the LC-polymer
interface, with two defect lines marked by red filled circles.
(f)–(i) POM micrographs showing two different g ¼ 5 drops
obtained (f) and (h) without and (g) and (i) with an additional
phase retardation plate. (j) 3D representation of nðrÞ of a g ¼ 5
drop; the color-coded scheme of azimuthal orientations is shown
in the inset.
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sophisticated surface topology, such as freestanding knots,
links, Seiphert surfaces, and Möbius strips and shells
formed by them [1,28–30], thus opening a new experi-
mental playground for low-dimensional topology in physi-
cal systems. TPDLC drops can be fabricated to have one
surface exposed to polar fluids such as water, thus
potentially expanding the spectrum of LC-based techniques
used for chemical and biological detection [31–33].
To conclude, we developed PDLCs with topologically

nontrivial shapes of drops, dubbed “TPDLCs.” By con-
trolling genus of confining surfaces, we showed that defects
in TPDLC drops can be avoided for g ¼ 1, and the net
topological winding number of defects can be controlled
for g > 1. Out of all topology-satisfying field and defect
configurations, free energy of the system selects half-
integer defect lines spanning through the LC bulk. This
behavior is very different from that observed in spherical
drops and in large millimeter-sized drops with handles [24].
Future studies will address the role of chirality in defining
TPDLC director field and defect configurations, as well as
how these structures can be controlled by means of electric
and optical switching of nðrÞ as well as by reducing the
droplet size to nanometer scales. It will be of interest to
extend the topology of confining surfaces to that of knots
and various nonorientable surfaces [15], such as Möbius
strips. From a practical standpoint, topological constraints
on nematic fields may allow for bistable modes of electric
switching of TPDLCs.
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