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We investigate the magnetotransport properties of strained 80 nm thick HgTe layers featuring a high
mobility of u ~ 4 x 10° cm?/V - s. By means of a top gate, the Fermi energy is tuned from the valence band
through the Dirac-type surface states into the conduction band. Magnetotransport measurements allow us to
disentangle the different contributions of conduction band electrons, holes, and Dirac electrons to the
conductivity. The results are in line with previous claims that strained HgTe is a topological insulator with a

bulk gap of ~ 15 meV and gapless surface states.
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The discovery of two- (2D) and three-dimensional (3D)
topological insulators (TIs), a new material class with
insulating bulk and topologically protected conducting
surface states, has opened an exciting research field in
condensed matter physics [1-10]. Although quite a number
of different, especially, Bi-based materials [11-14], belong
to this category, materials which combine high charge
carrier mobility and insulating bulk are still scarce. This is
mostly due to the fact that Bi-based 3D TIs are heavily
doped alloy films with a low mobility ~1000 cm?/V -s
and a high bulk carrier density of 10'7-10'° cm™.
HgTe-based 2D TIs, on the other hand, are characterized
by very high mobilities enabling the discovery of the
quantum spin Hall effect [15]. A recent analysis of the
sequence of quantum Hall plateaus suggests that also
strained HgTe layers constitute a 3D TI. The strain opens
a gap in the gapless semimetal HgTe so that the TI
properties can be explored by tuning the Fermi energy
Er into the bulk gap and probing the transport properties of
the gapless surface states. Although the strained HgTe film
has a much higher mobility x = (3 —4) x 10* cm?/V -5,
the high bulk carrier density and the absence of a top gate
have complicated the detection of 3D TIs so far [16,17].

The strain in HgTe layers grown by molecular beam
epitaxy stems from a 0.3% lattice mismatch between HgTe
and CdTe. The corresponding critical film thickness is
larger than 100 nm, meaning that thinner films adopt the
substrate lattice constant. Because of this strain, a small gap
of ~15 meV opens (see below) in the bulk energy spectrum
of the film. Within the bulk gap, the gapless surface states
reside. The charge neutrality point of the corresponding
Dirac cone is located in the valence band [16].

In this Letter, we report on transport properties of high-
mobility, 80 nm wide, strained HgTe films equipped with a
gate. The low disorder manifested in high charge carrier
mobilities, together with the possibility to tune E from the
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valence via the gap into the conduction band, enables us to
probe the 2D Dirac surface states when E is in the bulk
energy gap. Since HgTe films grown on CdTe suffer from
dislocations due to the lattice mismatch, our 80 nm thick
HgTe films were separated from the CdTe substrate by a
20 nm thin Cdj,Hgy5;Te buffer layer. This buffer layer
increases the electron mobility by an order of magnitude
(up to 4 x 10° cm?/V -s) and reduces the bulk impurity
concentration to values of order 10 cm™ (see the
Supplemental Material [18]). We fabricated and investi-
gated two types of devices: one with the upper HgTe
surface uncapped and the other one covered with a 20 nm
Cd,,Hg;Te cap layer (see Fig. 1(a) and the Supplemental
Material [18]). Since all measured major properties (mag-
netotransport traces, bulk energy gap, etc.) of capped and
uncapped films were similar, we will only focus on the
uncapped HgTe film below. For transport measurements,
the films were patterned into Hall bars (see the
Supplemental Material [18]) supplied with top gates.
Cross sections of the devices are sketched in Fig. 1(a).
For gating, two types of dielectric layers were used, giving
similar results: 100 nm SiO, and 200 nm of Si; N, grown by
chemical vapor deposition or 80 nm Al,O; grown by
atomic layer deposition. In both cases, TiAu was deposited
as a metallic gate. Magnetotransport measurements were
performed at temperatures 7 between 1.5 and 15 K and in
magnetic fields B up to 10 T. Several devices from the same
wafer have been studied.

Figure 1(b) shows the typical resistivity p,, at B = 0 and
Hall resistance p,, at B =1 T as a function of gate voltage
V,at T =19 K for a HgTe film with a Si3N, insulator.
The p,, trace exhibits a maximum near V, =1V and is
asymmetric with respect to V. the resistance on the left-
hand side of the maximum is significantly higher than on
the right side. While p,, displays a maximum in Fig. 1(b),
Py taken at 1 T changes sign at the same V,~ 1 V. This
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FIG. 1 (color online). (a) Cross section of our heterostructures.
(b) Left vertical axis: V, dependence of p,, at T = 1.9 K and for
B = 0. Right vertical axis: Hall resistance p,, (V)| for the
second sample. (c) Electron N (V) and hole P,(V,,) densities at
different V, extracted from the Drude model and high-field SdH
oscillations. The electron density of the top layer N\* is extracted
from low-field SdH oscillations (see text). (d) Electron and
hole mobilities averaged over all participating charge carriers
at different V. Between V, = 0.5 and 2 V, the fits to the two-
carrier Drude model were not reliable enough to extract electron
and hole mobilities (see the Supplemental Material [18]).

suggests that Ex can be tuned as a function of V, from the
conduction band to the valence band.

For V, <1V, the Fermi level is in the valence band,
where according to band structure calculations (See the
Supplemental Material in Ref. [16]), holes and Dirac
electrons coexist. The coexistence of two types of charge
carriers is experimentally supported by a large positive
magnetoresistance p,,(B) and by a nonlinear p,,(B),
typical for electron-hole systems [19,20]. To estimate the
mobility and density of the coexisting electron and holes,
we used the Drude formalism for two types of carriers.
Examples are given in the Supplemental Material [18]. A
similar analysis to extract the densities and mobilities of the

two carriers has been employed previously in semimetallic
HgTe quantum wells [20]. AtV > 2 V, the nonlinear Hall
effect turns into an essentially linear dependence of p,,(B)
indicating that the current is carried by only one sort of
carrier, i.e., surface electrons. A remaining small non-
linearity of p,,(B) is due to different densities and
mobilities of these electrons on the top and bottom surfaces.

The resulting electron and hole 2D density and mobility
are presented in Figs. 1(c) (labeled as “Drude”) and
1(d) [21]. Both the electron and hole densities change with
V, by afactor of nearly 10, thus, indicating that only a small
concentration of bulk impurities contributes to the conduc-
tivity. Figure 1(d) shows that electrons and holes exhibit very
high mobilities exceeding 10° cm?/V -s. The maximum
electron mobility of u = 4 x 10° cm?/V - sis 10 times higher
than in strained HgTe films discussed previously [16,17] and
almost 1,000 times higher than in 3D Bi TI samples. Linear
extrapolation of the PP™(V ) data in Fig. 1(c) gives an
intercept at V,~ 2.5 V, suggesting that the valence band
filling starts around here. At about the same value of V, the
slope of NP (V) in Fig. 1(c) and the temperature depend-
ence of p,.(V,) shown in Fig. 2(a) change noticeably: For
V,>2V, p, hardly changes with T but changes dramati-
cally for V, < 2 V where p,, varies by a factor of 2 between
T = 1.9 and 15 K. This behavior is ascribed to strong Landau
scattering [22] of coexisting electron and hole states, similar
to the one observed in Ref. [23].

Another feature in p,(V,) emerges at V, =4V
[Fig. 1(b)] accompanied by a change of the slope
of N smp(Vg) [Fig. 1(c)] extracted from low-field
Shubnikov-de Haas (SdH) oscillations (see below). We
suggest that these features mark the gate voltage at which
Er starts to enter the conduction band. Therefore, the data
presented in Figs. 1 and 2(a) imply that the gap opens
between 2 and 2.5 V (top of valence band) and closes
around 4 V (bottom of conduction band). Then, only Dirac
states localized at the two surfaces of the strained 80 nm
HgTe film contribute to transport. Outside this V, region,
Dirac electrons and bulk electrons (holes) conduct in
parallel. A sketch of the corresponding density of states
(DOS) versus energy is shown in the inset of Fig. 2(a).
Using the electron densities extracted at £, and E,. and the
calculated k-linear dispersion of Dirac electrons [16], we
estimate a gap size of & 15 meV. This value is very close to
the one calculated in Ref. [16] for a strained HgTe film. The
same value we found for the Cd,,Hg,;Te capped HgTe
film, indicating that the surface states are not affected by the
precise nature of the interface.

To check the validity of our picture further, we resort to
magnetoresistance measurements in a perpendicular mag-
netic field displayed in Fig. 2(b). The magnetoresistance
(MR) within classical Drude theory for two groups of
carriers (labeled by indexes 1 and 2) is for small fields
proportional to B2. Its magnitude normalized to p,,(B = 0)
is proportional to ((¢,0,)/(61 + 02)%) (41 F42)*, where o
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FIG. 2 (color online). (a) /)H(Vg) for different temperatures.
The inset sketches the density of states in our system.
() pyx(B)/ps(B =0) versus V, for different B. “E,” and
“E.” mark the onset of the valence and conduction band.

and y; are the conductivity and mobility of the respective
carrier species i at B = 0. The sign between y; depends on
the carriers’ polarity: in case they have the same polarity
(e.g., Dirac electrons in the conduction band) the “-” sign
applies, while in the case of different polarity (electrons and
holes coexist), the mobilities add, thus, resulting in a strong
MR. Hence, the maximum of the MR magnitude is
expected to occur in the semimetal state with Er residing
in the valence band near the charge neutrality point, where
N, = P, and o, and o, become comparable. A significant
change of the MR magnitude is expected when Er moves
from the valence band into the gap where only Dirac
electrons reside. For this single carrier type, the MR is
small. The corresponding normalized Ap,,(V,) and
Ap.(B) data displayed in Fig. 2(b) are in accord with
this expectation. For V, <2V, a large parabolic MR is
observed with a MR maximum at V, =1 V. In contrast,
for V, > 2V, i.e., where Dirac electrons prevail, the MR
drops by a factor of up to 10. The MR is expected to rise
again when the Fermi level moves from the gap into the
conduction band, as two (or more) groups of carriers with
different mobility are involved, i.e., Dirac and bulk elec-
trons. Bulk electrons near the bottom of the conduction
band are expected to have a much lower mobility than
Dirac electrons. A corresponding increase is, indeed,
visible in Fig. 2(b) (marked by “E_.”).

Important extra information can be obtained from experi-
ments in quantizing B. SdH oscillations and quantized Hall
steps can be seen in Fig. 3(a) as a function of V, for
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FIG. 3 (color online). (a) V, dependence of p,, and p,, at4 T.
Numbered arrows mark the total filling factors . (b) Magneto-
resistance p,, and Hall resistance p,, for V, =3 V, i.e., in the TI
regime. (¢) Left axis: Magnification of low-field p,,(B). Right axis:
calculated DOS for NP = 1.015x 10" em™ and NPt =
0.4 x 10" cm™2. The simulation follows closely the one described
in Ref. [16]. Fitting Er(B = 0), the energy shift between the fan
chart for the top and bottom surface electrons A (see, also, the
Supplemental Material in Ref. [16]) and the Landau level width
(assuming a Gaussian) and keeping N + N constant, one can
calculate the DOS of the different subsystems. The total low-field
DOS is dominated by the top layer and describes the observed
minima positions of p,(B) correctly. (d) p,,(B) minima positions
on a 1/B scale with the corresponding densities.

B =4 T. The maximum in p,, at V,~ 1 V corresponds to
the charge neutrality point at which the Hall resistance
changes sign. On the left, where low-mobility holes
dominate, no quantum Hall steps appear. In contrast, on
the right, where Dirac fermions and conduction band
electrons prevail, quantized Hall steps develop.
Surprisingly, the Hall steps extend into a V, region
where conduction band and Dirac electrons coexist. The
electron density extracted from high-field SdH oscillations
plotted in Fig. 1(c) is identical to the one obtained from
classical Drude fits. This means that the filling factors at
high B fields are determined by the total electron

196801-3



PRL 112, 196801 (2014)

PHYSICAL REVIEW LETTERS

week ending
16 MAY 2014

concentration N, ie., bulk and surface electrons.
Similarly, at large negative V, and high B, the hole density
extracted from SdH oscillations and from Drude theory are
nearly equal, while at smaller bias, the SdH data deliver
smaller hole densities. This suggests that the filling factor
in the valence band is given by the difference of bulk hole
and surface electron density. This is similar to the situation
observed in GaSb/InAs heterojunctions where electrons
and holes coexist [24]. A central observation is, thus, that
bulk (which, in our case, is an 80 nm wide HgTe quantum
well) and surface charge carriers determine jointly the
high-B Landau levels’ (LLs) filling factors. The p,(B)
minima do not vanish, indicating parallel conduction
probably due to the sides of the HgTe layer, which are
oriented parallel to the applied B [16]. The quantized Hall
steps on the electron side display, as in Ref. [16], even and
odd integer plateau values, thus, indicating different carrier
densities for the top and bottom surfaces.

This is not surprising, as it is a consequence of screening;
i.e., a part of the electric field gets screened by the
top layer of Dirac electrons. Applying an electric field
to the top gate, hence, results in different filling rates

dNtSOP(bOt) /dV ;. These rates can be easily estimated if E is
in the gap, i.e., between ~2 and 4 V. Then the change of top
and bottom electron density is given by [25]
ANYP/ANP =1 + (¢*Ddygre/ engreo), Where D is the
DOS of Dirac electrons on the top surface, and dy,r. and
epgre are the thickness and dielectric constant of the HgTe
layer, respectively. Inserting typical values, we obtain
ANYP /ANt = 3-5. Below we show that the experimen-
tally observed difference in the top and bottom layer filling
rate is close to this expected value. Besides N, we plot in
Fig. 1(c) also the electron density of the top surface as a
function of V. The corresponding data are obtained from
the following consideration: Assuming that the carrier
densities are equal at the flatband condition, i.e., at
V, =0V, the electron density on the top surface becomes
significantly higher for V,>2 V. The higher carrier
density of the top surface is expected to be connected
with a higher electron mobility [26]. This offers an
opportunity to separate the electron density of the top
and bottom layers experimentally. As the higher mobility of
the top layer is connected to a smaller Landau level
broadening, SdH oscillations commence at lower B and
dominate the low-field magnetoresistance oscillations in
Fig. 3(c). This is reflected in different periods of SdH
oscillations in the low and high B fields displayed in
Fig. 3(d). The 1/B positions of the SAH minima versus
filling factors can be fitted by two straight lines corre-
sponding to the carrier density Ny = 1 x 10" cm™2 of
the top layer and the total carrier density N =
1.4 x 10'" cm™2. N'P extracted from low-field SdH oscil-
lations for different V', is shown in Fig. 1(c). In both cases,
we assumed spin-resolved LLs. The reduced slope of

N®(V,) for V, > 4 V is a clear signature that £ moves
in the conduction band. Since dN{'/dV, is constant,
dNs?/dV, decreases when the bulk electron density
Nk starts to appear, i.e., when dN%¥/dV, > 0. For
B > 1T, Landau quantization gets resolved in the lower
mobility bottom layer, too, and, due to electron redistrib-
ution, the two surfaces (and for V, >4 V also the bulk
electrons) act like a single 2DEG with density N'™. The
redistribution of electrons in the TI state is possible via
contacts, ungated conducting regions, and via side facets
of the HgTe film.

That the low-field SdH oscillations stem from a single
surface of Dirac electrons is additionally supported by the
phase of the quantum oscillations: For the high-field
oscillations in Fig. 3(d), (1/Byn)/A1/p = v holds. The
integer value indicates the absence of a phase shift, as
expected for conventional SdH oscillations. Here, B, is
the B position of the SdH minima, and A, /5 is the period
of the oscillations on a 1/B scale. In the case of the low-
field oscillations, also plotted in Fig. 3(d), we obtain
(1/Bpin)/ Ay /5 = integer 4 0.64, i.e., quantum oscillations
with a phase shift of 0.64 4= 0.023. This is close to the value
of 0.5 expected for Dirac fermions on a single surface of a
topological insulator (see, e.g., Ref. [27]).

With N acquired from high-field SdH oscillations and
NP, we can for E between 2 V < V, <4V, ie,in the
TI regime, calculate the carrier density of the bottom layer,
N®°t. The corresponding data are also shown in Fig. 1(c).
The slope of Ni"(V,) is by a factor of ~3 higher than the
one of N¥(V,). This is in line with the effect of screening
discussed above.

In summary, we have shown that an analysis of magneto-
transport data in strained high-mobility HgTe layers brings
out the different carrier types contributing to transport at
different Fermi level positions. An analysis of high- and
low-field quantum oscillations highlights the interplay of
the different carrier types and allows us to probe the carrier
density of the top and bottom layers in the TI regime
separately.
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