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Lithium is one of the simplest metals, with negative charge carriers and a close reproduction of free-
electron dispersion. Experimentally, however, Li is one of a handful of elemental solids (along with Cu, Ag,
and Au) where the sign of the Seebeck coefficient (S) is opposite to that of the carrier. This counterintuitive
behavior still lacks a satisfactory interpretation. We calculate S fully from first principles, within the
framework of Allen’s formulation of Boltzmann transport theory. Here it is crucial to avoid the constant
relaxation time approximation, which gives a sign for S which is necessarily that of the carriers.
Our calculated S are in excellent agreement with experimental data, up to the melting point. In comparison
with another alkali metal, Na, we demonstrate that within the simplest nontrivial model for the energy
dependency of the electron lifetimes, the rapidly increasing density of states (DOS) across the Fermi energy is
related to the sign of S in Li. The exceptional energy dependence of the DOS is beyond the free-electron
model, as the dispersion is distorted by the Brillouin zone edge; this has a stronger effect in Li than other alkali
metals. The electron lifetime dependency on energy is central, but the details of the electron-phonon
interaction are found to be less important, contrary to what has been believed for several decades.
Band engineering combined with the mechanism exposed here may open the door to new “ambipolar”
thermoelectric materials, with a tunable sign for the thermopower even if either n- or p-type doping
is impossible.
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Thermoelectricity (TE) has drawn much attention over the
past century [1,2] as an effective way of producing electricity
from heat energy, or vice versa. In addition to applications
in waste heat recovery, the reversible functionality of TE
materials also enables heating and refrigeration within the
same unit. Spot cooling [3] of computer processors can be
achieved with TE devices of small size and without moving
parts. The efficiency of current thermoelectric devices is
relatively low compared to, e.g., thermal engines, which
limits their applications [1]. In the search for a good
thermoelectric material, a large Seebeck coefficient (S) is
one of the central components in the figure of merit, where it
appears squared. Most advances in TE, however, have
targeted the simpler tasks of lowering the thermal conduc-
tivity [4] or optimizing the electron density of states [5].
The magnitude of S is also important in other applications,
e.g., for thermal sensors [6]. Though S can be measured
straightforwardly in experiment and calculated theoretically
within certain approximations, a complete microscopic
understanding and paths for systematic improvement of S
are still lacking. The most common approach is to consider
a constant averaged relaxation time for the electrons (τ).
The relaxation time approximation (RTA) works in a
surprisingly large number of cases, but has little formal
justification; we expose some more of its limitations below.
Materials with n-type carriers should yield negative S,

as electrons diffuse from the high-temperature side to
the low-temperature side. This is not the case for the

monovalent metal Li at ambient pressure. It has been
known for a long time that lithium exhibits positive S
from low to high temperatures, through a martensitic
transformation at 77 K [7] and melting at 454 K [8–11].
This is in contrast to most simple metals, in particular, to
other alkali metals [12–14]. An explanation was proposed
by Robinson nearly half a century ago based on a nearly
free-electron model, where the positive Seebeck of Li was
attributed to the energy variance of the mean free path
around the Fermi energy [15], due to an unusual energy
dependence of the electron-phonon interaction [16]. These
calculations adopted model interactions for the scattering of
electrons by lattice vibrations, which relied on empirical
parameters. On the other hand, a controversial argument
was proposed by Jones in the 1950s that the positive
Seebeck in monovalent metals is due to the significant
deviation from the free-electron density of states (DOS),
because part of the Fermi surface lies close to the Brillouin
zone boundary [17]. No actual calculation was carried out
to verify this hypothesis. MacDonald also pointed out that
Li may depart considerably from a simple free-electron
model [13]. Ziman ascribed the large positive humps of S in
alkali metals (except Na and K) at low temperature to
phonon drag. The phonon drag contribution for Li is very
slight, and peaks around 80 K [12]. In this Letter, we revisit
the anomalous sign of S in Li through fully ab initio
calculations within the framework of Boltzmann’s transport
theory. To understand the positive sign of S in Li, we also
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explore the S of sodium metal, for a comparative analysis.
Contrary to Robinson’s hypothesis, while consistent with
that of Jones, we indeed find significant deviation from the
free-electron model in Li, and that the electron-phonon
interaction is not primarily responsible for the positive S.
Furthermore we show that, within a simple model for the
energy-dependent lifetime τðϵÞ, the spectral conductivity
(a purely electronic quantity) determines the sign of S.
We do not treat the phonon drag contribution, which can be
dominant below 50–100 K, but show that the diffusive
contribution is enough to describe the main variation
of SðTÞ.
To calculate the Seebeck coefficient, we adopt the

lowest-order variational approximation (LOVA) to the
Boltzmann transport equation [18]. For S it is crucial to
include explicitly inelastic contributions and Fermi smear-
ing effects. These are beyond the commonly used elastic
version of the LOVA [18,19], which leads to S ¼ 0. In the
LOVA,

Sαβ ¼ ðπkB=
ffiffiffi

3
p

eÞ
X

γ

ðQ01ÞαγðQ−1
11 Þγβ; (1)

where ðQnn0 Þαβ is the scattering operator for Cartesian
directions (α; β ¼ x; y; z), expressed in Allen’s basis set
(indices n, n0), and e is the absolute value of the electron
charge. The basis set is separated into k-dependent “Fermi-
surface harmonics” (FSH) and energy-dependent polyno-
mials (see below). In the LOVA one uses only the lowest
nonzero FSH, which is simply a normalized Fermi velocity,
viz., FαðkÞ ¼ vαðkÞ=vαðϵFÞ. The normalization is given
by v2αðϵÞ ¼ ½Pkv

2
αðkÞδðϵk − ϵÞ�=NðϵÞ, where NðϵÞ is the

density of electronic states.
The scattering operators are calculated as

ðQnn0 Þαβ ¼
2πVcellNðϵFÞ

ℏkBT

Z

dϵdϵ0dω
X

s;s0¼�1

fðϵÞ½1 − fðϵ0Þ�

× f½NðωÞ þ 1�δðϵ − ϵ0 − ℏωÞ þ NðωÞδðϵ − ϵ0 þ ℏωÞg
× α2trFðs; s0;α; β; ϵ; ϵ0;ωÞJðs; s0; n; n0; ϵ; ϵ0Þ; (2)

where ϵ; ϵ0 are electron energies relative to the Fermi level
ϵF, ω is a phonon frequency, Vcell is the unit cell volume,
f and N are the Fermi-Dirac and Bose-Einstein distribu-
tions at temperature T, respectively. The transport spectral
function α2trF is analogous to the Eliashberg spectral
function for superconductivity, but weighted by contribu-
tions from electron velocities. Among all the mechanisms
that affect the electronic transport, here we only consider
the electron-phonon coupling (EPC), which is dominant for
most materials except at very low temperatures. See the
Supplemental Material [20] for definitions and an overview
of Allen’s formalism. For the sign of S a crucial quantity is
the joint function Jðs; s0; n; n0; ϵ; ϵ0Þ in Eq. (2),

1

4

�

ζnðϵÞ
NðϵÞvðϵÞ þ s

ζnðϵ0Þ
Nðϵ0Þvðϵ0Þ

��

ζn0 ðϵÞ
NðϵÞvðϵÞ þ s0

ζn0 ðϵ0Þ
Nðϵ0Þvðϵ0Þ

�

;

composed of energy polynomials ζnðϵÞ, with ζ0 ¼ 1
and ζ1 ¼

ffiffiffi

3
p

ϵ=πkBT.
The EPC matrix elements, phonons, and electronic

velocities are calculated within density functional pertur-
bation theory (DFPT) [21,22], carried out using the ABINIT

package [23]. The exchange and correlation functional is
treated with the local density approximation. For bcc Li,
an unshifted 36 × 36 × 36 k-point grid and 12 × 12 × 12
q-point grid are employed, ensuring good convergence for
transport properties. For bcc Na, an unshifted k grid of
24 × 24 × 24 is found to be sufficient for our comparisons.
For the ground state and DFPT calculations a “cold
smearing” function [24] of width 0.04 hartree is used to
improve k-grid convergence. The plane-wave basis func-
tions with kinetic energies up to 20 hartree are used in both
systems.
For comparison, the Seebeck coefficient is also calcu-

lated within the constant relaxation time approximation,
using the BOLTZTRAP code [25]. This approach has often
been adopted in theoretical studies of thermoelectric
properties. In the RTA,

Sαβ ¼ −
1

eT

R

σαβðϵÞðϵ − ϵFÞð− ∂f
∂ϵÞdϵ

R

σαβðϵÞð− ∂f
∂ϵÞdϵ

; (3)

where σαβðϵÞ is e2τ
P

kvαðkÞvβðkÞδðϵ − ϵkÞ, with τ the
constant relaxation time [which cancels out in Eq. (3)].
The calculated S, together with the experimental data,

are shown in Fig. 1. Within the temperature range where the
bcc phase is stable, our prediction using the variational
approach (VA) agrees very well with the measured S,
except the older data from Bidwell, which deviates sig-
nificantly from other experimental values. The excellent
agreement on the magnitude and temperature dependence
of S also implies that electron-phonon coupling is the
main, if not sole, contribution to the electronic transport
properties in bcc Li. This can also be seen from the
agreement with measured data [26] in electrical resistivity
(see Supplemental Material, Fig. 2 [20]). On the other hand,
S calculated with a constant relaxation time (red dashed line
in Fig. 1) is negative for all temperatures. This is a clear and
qualitative failure of the constant RTA. In the case of Na
(Fig. 2), both theoretical predictions are consistent with the
experimental sign of S, i.e., negative. Comparing to the
magnitude of room-temperature S (∼ − 6 μV=K) in experi-
ments [9,11], the VA result (−5.42 μV=K) is in good
agreement, whereas the constant RTA (−3.09 μV=K)
underestimates by nearly 50%. The sign and order of
magnitude of S beyond the melting temperature appear to
be preserved, though with a jump for Li. This suggests that
the conduction mechanism stays fairly simple even after
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melting. The present methods (Boltzmann transport) are
strongly dependent on a solid and crystalline reference
phase. Going beyond will require explicit molecular dynam-
ics simulations coupled with a Kubo or other approach to
extract the Seebeck coefficient (similar to Ref. [27] for the
conductivity of liquid Fe). For further justification of the
variational approach, the Seebeck coefficient of K is also
calculated (see Supplemental Material, Fig. 3 [20]), which
agrees well with measured S; K turns out to be a “normal”
Alkali metal similar to Na.
To understand the positive sign of S in Li, we perform

a comparative analysis with Na (see Supplemental Material
for details [20]). According to Eq. (1), the sign of S is
determined by the sign ofQ01. The sign ofQ01 comes from
the integral of α2trF and J01 over the electron energy

R

dϵ.
The energy dependence of J01 alone favors the negative
sign of S, for both Li and Na. The different signs of S in Li
and Na originate from the energy dependence of α2trF.
To examine Robinson’s hypothesis [15,16] that positive S
in Li is caused by the unusual energy dependence of
electron-phonon interactions, we set the electron-phonon
coupling matrix to a constant (gkk0 ¼ 1). A positive value
of S is again obtained for Li, and negative for Na. Since the
normalized function FðkÞ has a very weak dependence on
the energy, the strong energy dependence of α2trFðϵÞ in Li is
due to the integration weights δðϵk − ϵÞ [see Supplemental
Material, Eq. (1) [20] ], which is essentially the density of
states.
We infer that the sign of S is determined by the energy

dependence of the electron lifetime. This can also be seen
from the RTA point of view. According to Eq. (3), as
−∂f=∂ϵ is positive and symmetric about the Fermi level ϵF,

the sign of S is determined by the energy dependence of
σðϵÞ. Increasing σðϵÞ yields negative S, and vice versa.
For a cubic system, without anisotropy, σðϵÞ consists of
v2ðϵÞ and τðϵÞ. We have shown that constant RTA yields
negative S for Li (Fig. 1), so the energy dependence of τðϵÞ
is crucial.
If the EPC is featureless, the energy dependence of the

electron-phonon scattering rate 1=τðϵÞ is proportional to the
density of states [28,29]. The electron DOS NðϵÞ of Li and
Na are illustrated in Fig. 3(a). As the sign of S does not
change with temperature for Li or Na, we choose T ¼
300 K for demonstration. In general, a span of ϵF � 8kBT
is sufficient to capture the substantial contributions to the
transport properties (of S, ρ, etc.). Near the Fermi level, the
DOS of Na varies slowly and does not deviate much from
the free-electron description. However, Li exhibits a sig-
nificantly increasing DOS across ϵF, until the band reaches
the boundary of the Brillouin zone at theN point. For v2ðϵÞ,
i.e.,

P

kvxðkÞvxðkÞδðϵ − ϵkÞ, Na still shows the free-
electron-like linear energy dependence near ϵF, but with
a much larger slope than Li [Fig. 3(b)]. The variation of
v2ðϵÞ in Li approaches a plateau just after ϵF. Again this
behavior deviates qualitatively from the free-electron
model, where a linear dependence is expected. Combining
these two factors, as shown in Fig. 3(c), an increasing
v2ðϵÞ=NðϵÞ is obtained for Na for the considered energy
range around ϵF, whereas it is decreasing for Li. At elevated
temperatures, although v2ðϵÞ=NðϵÞ no longer decreases
monotonically for Li due to the larger energy span, the sign
of S is unaffected because the major contribution is still from
electrons with energies close to the Fermi level.
The relationship between the sign of S and the energy

dependence of conductivity can also be seen from the Mott
relation, i.e.,

FIG. 2 (color online). Seebeck coefficient of Na, as a function of
temperature. Black solid line is the calculated S of bcc Na using the
variational approach (extended beyond the experimental melting
point), and the red dashed line denotes the calculated result of bcc
Na with constant τ. Discrete points are experimental data from
Kendall [9] and LB (Landolt-Börnstein database) [11]. The vertical
dotted line denotes the temperature of the melting point.

FIG. 1 (color online). Seebeck coefficient of Li, as a function of
temperature. Black solid line is the calculated S of bcc Li using
the variational approach (extended to the temperature where 9R
or liquid phase becomes stable experimentally), and the red
dashed line denotes calculated result of bcc Li with constant τ
from the BOLTZTRAP code. Discrete points are experimental data
from LB (Landolt-Börnstein database) [11], Bidwell [8], Kendall
[9], and Surla et al. [10]. The vertical dotted lines denote the
temperatures of 9R-to-bcc phase transition and melting point.
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S ¼ −
π2k2BT
3e

�

1

σ

dσðϵÞ
dϵ

�

ϵ¼ϵF

: (4)

As a qualitative estimation, if Drude’s formula σ ¼
ne2τ=m� is adopted for the conductivity and, again, the
relaxation time τ is taken to be inversely proportional to the
DOS, the energy dependencies from the charge carrier
density and τ are approximately balanced out, so that σ
has the same energy dependence as 1=m�. For Li, as
implied by the DOS in Fig. 3(a), the band becomes
flattened around the Fermi energy; this corresponds to
an increasing effective mass. Consequently, σ decreases
with energy and yields the positive sign of S.

We now turn to the possibility of doping-induced sign
changes in S. If Na is electron doped we predict, using
the relaxation time approach and the qualitative relation
between τ and DOS, that the sign of S changes from
negative to positive with a concentration ∼1 × 1022 cm−3

(0.358 e−=unit cell), cf. Fig. 4. This change of sign is
confirmed in the VA, for slightly higher doping levels but
with a much stronger amplitude: at 300 K, S ¼ 0.55 μV=K
from RTA while S ¼ 5.53 μV=K using VA.
Clearly the proportionality between the scattering rate

and DOS is qualitative, and works for simple systems.
The τðϵÞ model fails in particular for Fermi surfaces not
entirely within the first Brillouin zone. As an example,
if extra electrons are added to Li, e.g., in MgxLi1−x alloy
[30], the RTA with the model τðϵÞ yields a change of sign
of S from positive to negative at an extra electron concen-
tration of about 8 × 1021 cm−3 (Mg0.154Li0.846). However,
the VA-calculated S does not change sign, at least
up to an added carrier concentration of 4 × 1022 cm−3

(Mg0.771Li0.229, which is beyond the wide range of bcc
structure for the binary alloy). When the Fermi surface
reaches the BZ boundary, the distortions allow additional
electron-phonon scattering, which will change the scatter-
ing rate. Similar failures of the RTAwith either constant or
DOS-related τ are found in Cu, Ag, and Au, where the
model τðϵÞ still gives negative S. The positive S in these
group-11 metals is more complex than in Li, combining
a distorted Fermi surface with nontrivial electron-phonon
interactions, as was proposed by Robinson [15,16]. Fully
first-principles calculations are underway to elucidate the
precise mechanism.
In summary, we have calculated the first fully ab initio

Seebeck coefficient, using a variational solution to the
Boltzmann transport equation. Our calculated Seebeck
coefficients of Li and Na are in good agreement with
experimental data, whereas the commonly used constant
relaxation time approximation fails qualitatively for Li.

FIG. 3 (color online). (a) Density of states, (b) square of the
velocity (energy spectrum), (c) square of the velocity (energy
spectrum) divided by the corresponding density of states of Li
(solid black line) and Na (dashed red line). The vertical dotted
line denotes the Fermi energy. The insets show a zoom around ϵF.
The orange shaded region covers ϵF � 8kBT with T ¼ 300 K.
The blue shaded region (darker) shows ϵF � ωm, where ωm is the
maximum energy for phonons.

FIG. 4 (color online). Calculated Seebeck coefficient of
electron-doped Na using RTA and 1=τðϵÞ ∝ NðϵÞ, as a function
of temperature at several doping concentrations.
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Through a comparison between Li and Na, a detailed
analysis reveals that the sign of S is determined by the
energy dependence of the electron lifetime (generically
proportional to the inverse of the electronic DOS), whereas
the quantitative influence of the electron-phonon interaction
is not important. In Li, the DOS around the Fermi energy
deviates considerably from the free-electron model; our
analysis contradicts Robinson’s earlier explanations based
on exotic energy variations of the electron-phonon coupling.
The possibility of tailoring the sign of the Seebeck coef-
ficient through electronic band engineering opens many
pathways to improved thermoelectric devices. In more
complex cases, electron-phonon coupling effects will prob-
ably be as important as the purely electronic effects for the
net variation of the electron lifetime; both are included
seamlessly and on the same footing in the present formalism.
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