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We propose a novel physical mechanism for the creation of long-lived macroscopic exciton-photon
qubits in semiconductor microcavities with embedded quantum wells in the strong coupling regime. The
polariton qubit is a superposition of lower branch and upper branch exciton-polariton states. We argue that
the coherence time of Rabi oscillations can be dramatically enhanced due to their stimulated pumping from
a permanent thermal reservoir of polaritons. We discuss applications of such qubits for quantum
information processing, cloning, and storage purposes.
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Introduction.—Polaritonics is an interdisciplinary
research area at the boundary of optics and solid state
physics. It is aimed at the studies of light-matter interaction
and dynamics of exciton polaritons, or, shortly, polaritons:
quasiparticles with bosonic statistics formed as a result of
the light-exciton coupling. Nowadays, polaritonics repre-
sents an indispensable tool for investigation of quantum
coherent and nonlinear phenomena occurring at the matter-
field interface in various area of condensed matter physics,
quantum and atom optics [1–4].
Semiconductor microcavities serve as a solid-state

laboratory to study dynamical and quantum effects in open
and nonequilibrium systems of bosons. Particularly, one of
the main achievements in the field of polaritonics is the
creation of and manipulation with condensates character-
ized by a macroscopic occupation of a single quantum
state and extended temporal and spatial coherences. In
this sense, polaritonics presents a significant interest for
quantum information science.
Recently, various approaches have been proposed for

classical and quantum computation with the use of micro-
cavity polaritons, see, e.g., [5–9]. It has been proposed in [5]
and then demonstrated in [6] that the classical information
can be carried by lower branch polaritons (LP) propagating
in microcavity based optical integrated circuits. In the
quantum domain, an approach for generation of branch-
entangled pairs of polaritons in microcavities with the use of
spontaneous interbranch parametric scattering has been
formulated [7], opening up a possibility of using this process
for quantum information processing [8].
The main advantage of using exciton polaritons for

quantum information processing purposes comes from
their fast switching properties (the typical switching time
of a few picoseconds), relatively strong nonlinear response,
low power to perform logical operations [6], and features

of superfluid propagation, which are essential for the
realization of many algorithms in quantum information
science; see, e.g., [10–12]. Current polaritonic devices
could be designed by using very well-developed semi-
conductor micro- and nanotechnologies and enabled to
operate at high temperatures, up to the room temperature
[13]. However, due to the open and nonequilibrium nature
of the polariton condensates, they cannot serve directly as
qubits, since it is not possible so far to generate a polariton
state with a fixed well-defined number of particles.
In practice, a macroscopic polaritonic system could be

used for continuous variable quantum computation, or for
quantum computation with macroscopic polariton states,
cf. [14,15]. Light-matter interaction in microcavities gives
rise to the natural two-level system, a Rabi doublet, or a
doublet of lower, jLPi, and upper, jUPi, macroscopically
occupied orthogonal polariton states

jLPi¼CxjXi−CpjPi; jUPi¼CpjXiþCxjPi; (1)

being hybridized states of the quantum well exciton, jXi,
and cavity photon, jPi. Hopfield coefficients Cx;p ¼
2−1=2ð1� Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

p
Þ1=2 are determined by the system

parameters, with g being the exciton-photon coupling
parameter and Δ being the detuning between the bare
photon and exciton mode, and can be controlled in the
state-of-the-art structures with needed accuracy. The quan-
tum state of a qubit jΨi can be presented as a linear
combination of jLPi and jUPi states,

jΨi ¼ β1jUPi þ β2jLPi; (2)

with two complex coefficients β1;2 satisfying the normali-
zation condition jβ1j2 þ jβ2j2 ¼ 1. Hence, the quantum
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state of a qubit is determined by the occupations of the
upper and lower polariton states given by jβ1;2j2, respec-
tively, as well as by their relative phase. In the case of free
evolution of the system the coefficients in Eq. (2) read β1 ¼
e−iΩ1t=

ffiffiffi
2

p
and β2 ¼ e−iΩ2t−iφ=

ffiffiffi
2

p
, where φ is an arbitrary

phase and Ω1;2 are the eigenfrequencies of the UP and LP
states, respectively. The beats between the LP and UP states
are known as Rabi oscillations.
Current progress in the microcavity growth technology

makes it possible to produce structures where such Rabi-
oscillator based qubits can be coupled to each other, thus
paving the way to polariton-based quantum computation
devices. However, the main problem here is to preserve a
coherence between jUPi and jLPi states within the time of
quantum logic operations, or, most generally, during the
time of computation [10]. Actually, decoherence occurring
due to the interaction of the qubit system with its environ-
ment prevents application of quantum algorithms [16]. As a
result, in the presence of decoherence a polariton qubit state
(2) decays as jΨi ∝ e−t=τR , where τR is the characteristic
decay time governed by the scattering of polaritons to the
reservoir and the photon leakage through the mirrors. The
decoherence time may be quite short in realistic systems,
typically comparable or even shorter than the lifetime of the
exciton polariton τ0 that is on the picosecond time scale [17].
Thus, only a few periods of polariton Rabi oscillations could
have been observed experimentally [18,19].
The aim of this Letter is to indicate the way of creating a

stable polariton qubit in a resonantly cw pumped system of
exciton polaritons, where Rabi oscillations are induced by a
short pulse of light. We demonstrate that in the presence of
an incoherent reservoir of polaritons the coherence time of
Rabi oscillations may be dramatically increased. This is
because of the stimulated scattering of polaritons towards
the qubit state jΨi, which supports the given superposition
of jLPi and jUPi states. In realistic microcavity systems the
enhancement of the coherence time up to nanoseconds can
be achievable.
Model.—We consider exciton polaritons in a planar or

pillar microcavity under incoherent nonresonant cw

pumping; see Fig. 1. The pumping helps to form a reservoir
of long-living exciton polaritons with large in-plane wave
vectors. We assume that the pumping is strong enough so
that only two polariton states, jLPi and jUPi, can be
macroscopically occupied. The dynamics of the Rabi
doublet can be most conveniently described by the density
matrix approach. The diagonal elements of a 2 × 2 density
matrix ϱ determine the mean occupations ϱ11 ¼ N1 of the
jUPi and ϱ22 ¼ N2 of the jLPi states, while off-diagonal
elements ϱ12 ¼ ϱ�21 determine the coherence between those
states. For a pure quantum state in the form of Eq. (2),
ϱ11 ¼ jβ1j2, ϱ22 ¼ jβ2j2, ϱ12 ¼ β1β

�
2, and ϱ21 ¼ β�1β2.

In this Letter, we refrain from the analysis of the full
statistics of the polariton Rabi doublet, which can be treated
by other methods [20,21], and follow the pseudospin
approach like in Ref. [22]. For simplicity we neglect
polariton-polariton interactions for the macroscopically
occupied states. The dynamics of the density matrix is
given by dϱ

dt¼− i
ℏ½H;ϱ�þLfϱg, where H is the Hamiltonian

of the system whose only nonzero elements are the
diagonal ones, H11 ¼ E1, H22 ¼ E2, being energies of
jUPi and jLPi states, and Lfϱg stands for the Lindblad
superoperator describing dissipation in the system.
Equations describing occupation dynamics have a standard
form:

_ϱii¼ _Ni¼−
Ni

τi
þð1þNiÞWin

i −NiWout
i ; i¼1;2; (3)

where dots denote time derivatives and τi is the lifetime of
the ith state. In particular, τ1;2 are expressed through exciton
(τexc) and photon (τph) lifetimes as τ−11;2 ¼ jCp;xj2τ−1exc þ
jCx;pj2τ−1ph . For the state-of-the-art semiconductor micro-
cavities where τexc ∼ 100 ps and τph ∼ 10 ps the inequality
τph ≪ τexc typically holds, cf. [17]. In this case one can set
τ1;2 ≃ τph=jCx;pj2 for UP and LP branch lifetimes, respec-
tively. In Eqs. (3), Win

i (Wout
i ) is the in-scattering rate to

(out-scattering rate from) the state i from (to) the reservoir,
Fig. 1(b). In general, Win or out

1 ≠ Win or out
2 owing to the

significant Rabi splitting ℏΩR¼jE1−E2j¼ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þ4g2

p
,

which can be comparable with the energy of exciton polar-
itons in the reservoir. As follows from Eqs. (3), any
fluctuation δNi ¼ Ni − N̄i, where N̄i are the steady occu-
pations of polariton states, decays according to _δNi¼
−δNi=τc;i, where τc;i¼ðN̄iþ1Þð1=τiþWout

i Þ−1, see [22].
To address the dynamics of the Rabi oscillator it is

convenient to parametrize the density matrix using the
pseudospin formalism, ϱ11 ¼ N þ Pz, ϱ22 ¼ N − Pz,
ϱ12 ¼ Px − iPy. Here N ¼ ðN1 þ N2Þ=2 and P ¼
ðPx; Py; PzÞ is the pseudospin. Following [22,23] we
obtain

_N¼ −½τ−1þ − δWþ�N − ½τ−1− − δW−�Pz þWþ; (4a)

FIG. 1 (color online). (a) Scheme of polariton qubit excitation
in semiconductor microcavity with embedded quantum well
(QW) sample. (b) Polariton dispersion and schematic polariton
scattering processes supported by incoherent reservoir pumping
(shadow area) for Δ ¼ 0.
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_Pz¼ −½τ−1þ − δWþ�Pz − ½τ−1− − δW−�N þW−; (4b)

_P⊥¼ −½τ−1þ þ τ−1⊥ − δWþ�P⊥ − ½ΩR × P⊥�: (4c)

Here, P⊥ ¼ ðPx; PyÞ, ΩR ¼ ΩRez, where ez is a unit
vector along the z axis, W�¼ðWin

1 �Win
2 Þ=2, δW�¼

½ðWin
1 −Wout

1 Þ�ðWin
2 −Wout

2 Þ�=2, and 1=τ⊥ is the additional
damping rate for the off-diagonal density matrix compo-
nents. We stress that the pseudospin P is equivalent to the
Bloch vector used to describe the state of any two-level
system. In Eqs. (4) we have introduced the characteristic
decay rates τ−1� ¼ ðτ−11 � τ−12 Þ=2.
Results and discussion.—Figure 2 shows the temporal

dynamics of the normalized pseudospin Bloch vector
component Px calculated numerically from Eqs. (4),
assuming that τ⊥ ≫ τ0 and Cx;p ¼ 1=

ffiffiffi
2

p
, Win

1 ¼ Win
2 .

Other parameters of the calculation are presented in the
caption of Fig. 2. We assumed that at t ¼ 0 the coherence
between the upper and lower polariton branches is estab-
lished by a short and weak laser pulse (see Fig. 1), that sets
the initial conditions in Fig. 2. As it is clearly seen from
Fig. 2, the lifetime of Rabi oscillations τR increases with the
cw pumping intensity. In such a case, the Rabi oscillations
are sustained by the reservoir.
To evaluate this effect analytically, we note that in

accordance with Eqs. (4) Px þ iPy ∝ e−iΩRt−t=τR , where
the decay rate of Rabi oscillations τ−1R is given by

τ−1R ¼ τ−10 − δWþ: (5)

Here, τ0 ¼ τþτ⊥=ðτþ þ τ⊥Þ is the effective lifetime of the
polaritonic system without reservoir. It is noteworthy that
δWþ > 0 means that the incoming scattering rate from the
reservoir to theRabi qubit exceeds the outgoing rate from the
qubit to the reservoir, τR > τ0. Hence, the Rabi oscillations,
which in the pseudospin language are described as a
precession of a P⊥ around the z axis, decay slower.
The decay rate of Rabi oscillations can be recast in

a different form in order to demonstrate that τR > 0
despite the negative sign in Eq. (5). We introduce the
incoming and outgoing scattering rates asWin

1;2 ¼ W in
1;2NR,

Wout
1;2 ¼ Wout

1;2ð1þ NRÞ, whereW in or out
i (i ¼ 1; 2) are some

constants and the occupation of the reservoir NR must
satisfy the following equation:

_NR ¼ P −
X
i¼1;2

½W in
i ð1þ NiÞNR −Wout

i Nið1þ NRÞ�: (6)

Here P is the particle generation rate in the reservoir. In
what follows we assume that the outscattering processes to
the reservoir can be neglected (Wout

1;2 ¼ 0) to simplify the
subsequent computations. Thus, in the steady state,

Niτ
−1
i − NiNRW in

i ¼ NRW in
i ; i ¼ 1; 2; (7)

and making use of Eqs. (5), (4a), (6) and the definition of
δWþ we obtain

τ−1R ¼ τ−1⊥ þ NRðW in
1 N

−1
1 þW in

2 N
−1
2 Þ=2 > 0: (8)

It is clearly seen that an increase of the occupation of the
doublet leads to the decrease of 1=τR and the increase of
the coherence time of Rabi oscillations. The closed form
result for the τR dependence on the pumping rate can be
obtained taking into account that the steady-state occu-
pancy of the reservoir can be found from the following
equation:

P ¼ W in
1 NR

1 − τ1W in
1 NR

þ W in
2 NR

1 − τ2W in
2 NR

: (9)

Finally, we obtain

τR
−1 ¼ τ0

−1 −
1þ α

4α

�
Pðατ1 þ τ2Þ þ αþ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðατ1 − τ2Þ2 þ 2Pðατ1 − τ2Þðα − 1Þ þ ðαþ 1Þ2

p
Pτ1τ2 þ τ2 þ τ1

�
; (10)

FIG. 2 (color online). Temporal dynamics of the normalized
Bloch vector component Px=N0 [N0 ≡ Nðt ¼ 0Þ] in the presence
(solid, blue curve) and in the absence (dash-dotted, black curve)
of pumping. Dashed (purple) and dotted (green) curves show the
envelope of Rabi oscillations in the presence and absence of
pumping, respectively. The parameters are Pτ0 ¼ 20, Wout

1;2 ¼ 0,
ΩRτ0 ¼ 10. Initial conditions at t ¼ 0 are Px=N0 ¼ 0.14,
Py=N0 ¼ 0, and Pz=N0 ¼ 0.48.
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where α ¼ W in
1 =W

in
2 and it is assumed that 0 ≤ α ≤ 1. For

α > 1 in Eq. (10) one has to replace α → 1=α and exchange
τ1 and τ2.
Figure 3 shows the dependence of τ0=τR onPτ0 calculated

for various values of α. Here, similarly to Fig. 2, we consider
jCx;pj2 ¼ 1=2 that implies equal upper and lower branch
polariton lifetimes, i.e., τpol ≡ τ1 ¼ τ2. Experimentally,
this condition can be satisfied in specially designed pillar
microcavities [24], while in planar cavities the lifetime of a
jUPi state is usually much shorter than the lifetime of an
jLPi state. The imbalance of lifetimes in this case can be
compensated by the imbalance of pumping, which may be
achieved in the case of a quasiresonant pumping of the jUPi
state and can be accounted for in our model by a proper
choice of the parameter α. We shall also assume τ⊥ ≫ τ0. In
this limit, the effective lifetime of the polaritonic system τ0
approaches to τ0 ≃ τpol. If, bycontrast, τ⊥ is comparablewith
τpol than at Pτpol → ∞,

τpol
τR

≃ τpol
τ⊥

þ 1 − α

2
; (11)

meaning that the decay time ofRabi oscillations is limited by
τ⊥. In any case, the decay rate of Rabi oscillations decreases
with the increase of the pumping rate, but the asymptotic
value depends on the imbalance of the scattering rates
towards jLPi and jUPi states having its minimum at
α ¼ 1, i.e.,W in

1 ¼ W in
2 , cf. (11) and Fig. 3. In the optimum

case, which would correspond to a pillar microcavity with
equal jLPi and jUPi lifetimes, α ¼ 1, τ⊥ → ∞, for τpol ¼
10 ps and ground state occupation N1 ¼ N2 ¼ 102, we
have τR ∼ 1 ns.
In planar microcavities the lifetimes of jUPi and jLPi

states can be strongly different. Importantly, an increase of
the coherence time τR can be observed in this case as well:
see dashed curve in Fig. 3. Particularly, if W in

1 =W
in
2 ¼

τ2=τ1 the populations of upper and lower polariton states
become equal and τR ¼ τ0ð1þ Pτ0=2Þ.
Let us study the properties of the polariton qubit

described by Eq. (2). Without any loss of generality one
can rewrite Eq. (2) as

jΨi ¼ e−iω0t

�
cos

�
θ

2

�
j0i þ eiπ=2 sin

�
θ

2

�
j1i

�
; (12)

where we introduced the azimuthal angle θ ¼ ΩRt,
states j0i ¼ ðe−iφjLPi þ jUPiÞ= ffiffiffi

2
p

and j1i ¼ ðe−iφjLPi−
jUPiÞ= ffiffiffi

2
p

represent orthogonal (computational) qubit,
ω0 ¼ ðΩph þ ΩexcÞ=2, Ωph and Ωexc being the bare
frequencies of the photon and exciton modes, respectively.
Figure 4 shows the time evolution of the qubit state jΨi

for various ratios of τ0=τR at the Bloch sphere. Since one of
the Euler angles is equal to π=2, see Eq. (12), the qubit
Bloch vector evolves in a plane. In particular, it is clearly
seen that due to the reservoir supported Rabi oscillations
the decoherence effects are essentially suppressed for the
solid (red) trajectory.
The manipulation of the qubit state Eq. (12) can be

tailored through variation of phase for a fixed Rabi
frequency ΩR. On the other hand, it is possible to
manipulate byΩR as well by controlling the exciton-photon
coupling parameter g by external electric fields, which
affect the exciton oscillator strength, or by manipulating the
exciton-photon detuning Δ, cf. [25]. In the latter case,
however, the Hopfield coefficients Cp and Cx also vary and
the states j0i and j1i are no more basic computational states
of the system. Hence, it is instructive to rewrite Eq. (12) in
the exciton-photon basis in this case. In particular, from
Eqs. (1), (12) we express jΨi¼e−iω0t½β1jXiþβ2jPi�, where
the coefficients β1;2 are defined as β1;2 ¼ ðe−iθ=2Cp;x �
eiθ=2−iφCx;pÞ=

ffiffiffi
2

p
, cf. Eq. (2). In this form, the qubit state

jΨi represents a linear superposition of the matter (exci-
tonic) and photonic qubit state. The phase φ determines the
initial state of the qubit. The short pumping pulse sets the
initial condition of β2 ¼ 1 that corresponds to the purely
photonic state jΨðt ¼ 0Þi ¼ jPi .

FIG. 3 (color online). Ratio τ0=τR as a function of the pumping
rate Pτ0. For solid (dashed) curves τ1 ¼ τ2 (τ2 ¼ 10τ1).

FIG. 4 (color online). Bloch sphere representation of polariton
qubit dynamics without (dashed curve) and with (solid curve)
reservoir supported Rabi oscillations. The parameters are α ¼ 1,
φ ¼ π=2, Pτ0 ¼ 20.
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Next, for quantum information applications, it is impor-
tant to demonstrate the entanglement between different
qubit states. Such an entanglement could be achieved with
use of the coupled cavity architecture due to the photonic
tunneling between neighboring cavities, cf. [26,27].
Polariton qubits can be used for quantum cloning and

quantum memory applications [28]. In particular, the
quantum cloning procedure of the photonic state onto
UP and LP states can be realized by using an algorithm
proposed by some of the present authors in [9] which
implies the coherent manipulation of Hopfield coefficients.
Furthermore, the dynamical memory algorithm (see, e.g.,

[29]) can be realized using the semiconductor microcavity
structures described above. This algorithm imposes map-
ping of the quantum information contained in the initially
prepared photonic state jΨðt ¼ 0Þi ¼ jPi onto the excitonic
qubit state jXi. The writing, reading, and storage stages in
this case can be achieved by a time control of the exciton
dipole matrix element [parameter g≡ gðtÞ] and/or by
manipulation of the exciton-photon detuning Δ≡ ΔðtÞ
adiabatically, cf. [25]. We expect that the proposed mecha-
nism of enhancement of Rabi oscillations would allow
realization of high-temperature quantum memories with a
lifetime of the order of hundreds of picoseconds.
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