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The collective emission from a one-dimensional chain of interacting two-level atoms is investigated. We
calculate the light scattered by dissipative few-excitation eigenstates in the far field, and, in particular, focus
on signatures of a lattice two-body bound state. We present analytical results for the angle-resolved,
temporal decay of the scattered light intensity. Moreover, we find that the steady-state emission spectrum
that emerges when the system is probed by a weak, incoherent driving field exhibits a distinct signature
for the existence of a bound state, and allows us to determine the momentum distribution of the
two-body relative wave function. Intriguingly, our study does not rely on single-atom addressability
and/or manipulation techniques.
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Over the last years, artificially designed lattice systems
have become the focus of intense experimental and theo-
retical research across various subdisciplines in quantum
optics. Realizations that have already reached a highly
sophisticated level of control over basic mechanisms of
light–matter interaction include, to name just a few, cold
atoms in optical lattices [1–3], fiber-based settings [4],
atom–cavity networks [5,6], or on-chip photonics [7].
Despite these promising avenues, longstanding, funda-

mental questions are far from being outdated and are just at
the edge of what is realizable experimentally today. For
instance, while the prediction of a two-body bound state on a
lattice dates back to Bethe [8], experimental investigations
have become possible only recently in the context of the
Bose-Hubbard model [2] or the Heisenberg model [3]. In
line with these experimental advancements, the scope of
recent theoretical studies includes the study of the few-
excitation eigenstates of 1D lattice systems [9–11], aspects
of dynamics [11,12], or issues of entanglement and coher-
ence [13]. However, the recent experiments on the two-body
bound state [2,3] are demanding in that they require in situ
tuning of parameters and/or single-site manipulation. This
prompts us for alternative approaches. A promising candi-
date is the coupling to a probing light field [14–17], which
raises the question of how much information about an exotic
two-body bound state on a lattice can be inferred from the
optical far field.
In this paper, we analytically calculate the scattered light

from a 1D lattice of atoms, and show that a dissipative and
collective two-body bound state imprints an unambiguous
characteristic far-field signature onto the light. Unlike in
recent state-of-the art cold-atom experiments [2,3], the
bound state discussed in the present work is like a molecule
of two quanta stored as atomic excitation in a lattice of
immobile atoms, rather than a composite object of two atoms
tunneling in an optical lattice. We employ a description

reminiscent of spin physics that allows us to discuss the
relevant physical mechanisms in a broader context. Relating
atomic operators to the emitted light field and based on the
dissipative dynamics as described by a Lindblad equation,
we utilize the Glauber decomposition [18] to obtain far-field
observables that are amenable to standard experimental
techniques. We first identify the fingerprint for the two-
body bound state in its spontaneous emission dynamics.
Then, we show that the same distinct feature is also present
in the emission spectrum when the system is probed by
a weak, incoherent driving field. Furthermore, we discuss
a method to infer the bound state’s momentum distribution
from the far field. These findings represent a simple means
for the identification of a two-body bound state without the
need to individually address and manipulate single atoms.
From a broader perspective, our investigations open up an
alternative approach for the study of exotic excitations in
a quantum-optical context.
To begin with, we introduce our model based on its

underlying building block, which is a single two-level atom.
Being coupled to an electromagnetic reservoir (e.g., free
space), the bare atomic transition frequency ω0 is shifted by
ImðΓ0Þ=2 ¼ γ0=π (Lamb shift) and the atom is subject to
spontaneous decay with a rate of ReðΓ0Þ ¼ γ0 [19]. If we
imagine an identical, second atom nearby, photons can be
exchanged between the two atoms via the common electro-
magnetic reservoir by virtue of dipole-dipole coupling. Let the
amplitude of this process be proportional to ImðΓ1Þ and the
dissipative part (i.e., irreversible photon loss to the reservoir)
be characterized by ReðΓ1Þ. To give one example, for atoms
embedded in free space with dipole moments aligned
perpendicular to the interatomic distance vector (magnitude
a), we have [19] Γ1 ¼ −ð3iγ0λat=4πaÞ expð2πia=λatÞ, where
λat ¼ 2πc=ω0 (speed of light c). Besides these dissipative
aspects, atom-atom interactions result in an energy shift U
if both atoms are in the excited state.
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Combining these elements, we can construct the
Hamiltonian for a 1D lattice of M ≫ 1 atoms [see also
sketch in Fig. 1(a)]. In this paper, we focus on a situation
where the bare atomic emission wavelength is smaller than
the lattice constant, i.e., λat=a < 1, realizing the “extended-
sample regime” (contrasting the established “small-volume
limit” [20,21]). In this regime, we can restrict the dipole-
dipole coupling and the atom-atom interactions to nearest
neighbors. Based on Ref. [19], we formulate the
Hamiltonian (ℏ≡ 1, M ≡ N þ 1 is odd)

Ĥ ¼
XN=2

n¼−N=2

�
ω0 −

iΓ0

2

�
σþn σ−n

þ
XN=2−1

n¼−N=2

�
−
iΓ1

2
ðσþnþ1σ

−
n þH:c:Þ þUσþnþ1σ

−
nþ1σ

þ
n σ

−
n

�
:

(1)

Here, σþn (σ−n ) denotes a raising (lowering) operator for the
atom at lattice site n [satisfying the Pauli spin-1=2 operator
algebra ½σþi ; σ−j � ¼ ð2σþi σ−i − 1Þδij]. Since the rates Γ0 and
Γ1 that enter this effective Hamiltonian are complex
numbers, the eigenproblem is non-Hermitian, which
allows for the study of the dissipative and collective
radiative eigenmodes. Exemplarily, orders of magntiudes
in the field of Rydberg atoms are [22] λat ∼ 500 nm
(ω0=2π ∼ 500 THz), γ0 ∼MHz, and U ∼ 50 GHz (for
a ∼ 1 μm), representing separated scales ω0 ≫ U ≫ γ0.
Also note that the Hamiltonian (1) can be recast into the
form of an xyz-type spin model [using the relation to the
Pauli matrices σ�n ¼ ðσxn � iσynÞ=2] which finds application
in the field of coupled-cavity arrays [23] or in the context
of cold polar molecules [24].
In the subspace of a single excitation (i.e., C≡P
nhσþn σ−n i ¼ 1), the interaction U plays no role and the

eigenstates jki ¼ P
nφ

ðkÞ
n σþn j0i (j0i is the vacuum state) are

1D spin waves φðkÞ
n ¼ exp ðikanÞ= ffiffiffiffiffi

M
p

with a wave number
ka ¼ −π þ 2πl=M from the first Brillouin zone
(l ¼ 0;…;M − 1). The corresponding complex eigene-

nergy Eð1Þ
k ¼ ω0 − iΓ0=2 − iΓ1 cosðkaÞ represents the dis-

sipative dispersion relation of a tight-binding chain.
Assuming sharp optical transitions (γ0 ≪ ω0), we may

neglect the Lamb shift such that ReðEð1Þ
k Þ≃ ω0. For weak

dipole-dipole coupling (λat=a < 1), ImðEð1Þ
k Þ≃ −γ0=2,

which means [19] that the single excitation’s probability

decays at a rate Γk
0 ≡ −2ImðEð1Þ

k Þ≃ γ0.
The eigenstates for two excitations (C ¼ 2) can be

written as jKνi ¼ P
n1n2Φ

ðKνÞ
n1n2σ

þ
n1σ

þ
n2 j0i, where the two-

spin wave function for n1 ≠ n2, ΦðKνÞ
n1n2 ¼ exp ½iKaðn1þ

n2Þ=2�=ð2
ffiffiffiffiffi
M

p ÞΨðKνÞ
n1−n2 is a product of a center-of-mass

plane wave (wave number K) and a relative wave function

ΨðKνÞ
n1−n2 [2,3,9–11]. For n1 ¼ n2, the wave function needs to

vanish (ΨðKνÞ
0 ¼ 0) since a single atom cannot be doubly

excited, expressing the fact that the excitations of a 1D
spin-1=2 chain are hard-core bosons. Originally put for-
ward by Bethe [8] (and, for instance, also addressed in
Refs. [2,3,9–11]), is the remarkable fact that a complete
basis of the two-excitation submanifold comprises scatter-
ing states and bound states.
Consequently, for each center-of-mass momentum K,

we have scattering states characterized by their relative
momentum p. The relative wave function is of the form

ΨðK;ν¼pÞ
x≠0 ∝expðipajxjÞþexpð−ipajxjþiδKpÞ, where δKp

denotes the scattering phase shift induced by the interaction
U and describes the collision of two interacting spin waves.
Their complex eigenenergy is independent of the inter-
action strength U and can be written as the sum of single-
excitation energies (as is always the case for scattering

states), yielding Eð2Þ
Kp ¼ Eð1Þ

K=2þp þ Eð1Þ
K=2−p ¼ 2ω0 − iΓ0 −

2iΓ1 cosðK=2Þ cosp. As before, we may approximate this

expression as ReðEð2Þ
KpÞ≃ 2ω0 and ImðEð2Þ

KpÞ≃ −γ0.
Assuming the atom-atom interaction to be much stronger

than the dipole-dipole coupling (in essence, U ≫ γ0), we
furthermore have (for each center-of-mass wave number K)
a bound state which we denote with the label ν ¼ BS.

The relative wave function ΨðK;BSÞ
x≠0 ¼ αjxj−1K is exponentially

localized with respect to the relative coordinate x≡ x1 − x2
[αK ¼ −iΓ1 cos ðK=2Þ=U, jαKj < 1]. For U ≫ γ0, this

bound state is tightly confined, i.e., ΨðK;BSÞ
x ¼ δjxj;1, and

describes a composite two-excitation object moving along
the lattice. Because only neighboring sites are occupied, the
minimal spatial separation between two excitations is given

FIG. 1 (color online). (a) 1D lattice of
two-level atoms (dipole moments
aligned parallel to the x axis). (b) An
incoherent drive (pump rate jPj2, angle
βexc ≠ 0) “imprints” the wave number
kP so that the relevant Hilbert space
comprises only two-excitation states
with K ¼ 2kP. The pump’s electric field
polarization vector lies in the x-z plane
and is perpendicular to k.
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by the lattice constant a. The bound state’s eigenenergy

reads Eð2Þ
K;BS ¼ 2ω0 − iΓ0 þ ½U2 − Γ2

1cos
2ðK=2Þ�=U and

contains an interaction-induced energy shift. For U ≫ γ0,

we have the expressions ReðEð2Þ
K;BSÞ≃ 2ω0 þU and

ImðEð2Þ
K;BSÞ≃ −γ0. While two excitations approximately

all decay at a rate of ΓKν
tot ≡ −2ImðEð2Þ

KνÞ≃ 2γ0 for both
ν ¼ p and ν ¼ BS, the bound states’ energies are detached
from the quasicontinuum of scattering states (see Fig. 2).
Next, we formulate a Lindblad equation ∂tϱ̂ ¼ i½ϱ̂; Ĥ0� þ

Lðϱ̂Þ based on the single- and two-excitation eigenstates
[25]. Employing projectors Ŝr;r0 ≡ jrihr0j, the density matrix
reads ϱ̂ ¼ P

rr0ϱr;r0 Ŝr;r0 (where r; r0 ∈ f0; fkg; fKνgg).
For the coherent dynamics, we now utilize Ĥ0 ¼P

KνReðEð2Þ
KνÞŜKν;Kνþ

P
kReðEð1Þ

k ÞŜk;k. The incoherent
part Lðϱ̂Þ ¼ P

s½Rsϱ̂R
†
s − ðR†

sRsϱ̂þ ϱ̂R†
sRsÞ=2� (with s ∈

ffKν; kg; fk; 0gg) is constructed from the dissipators

R†
Kν;k ¼

ffiffiffiffiffiffiffiffi
ΓKν
k

p
ŜKν;k and R†

k;0 ¼
ffiffiffiffiffi
Γk
0

q
Ŝk;0. Here, we intro-

duced ΓKν
k ≡ bðKνÞk ΓKν

tot ≃ 2γ0b
ðKνÞ
k , where the branching

ratio bðKνÞk accounts for the contribution of the decay path
jKνi → jki to the overall decay of state jKνi. The resulting
equations of motion are given in the Supplemental
Material [26].
In this Letter, we focus on the emission properties of a

bound state jK;BSi and, in a first step, study its sponta-
neous emission dynamics. Assuming the system has been
prepared in a pure eigenstate at time t ¼ 0, the dynamics
simplifies to

ϱK;BS;K;BSðtÞ≃ e−2γ0t; (2)

ϱk;kðtÞ≃ 2bðK;BSÞk ðe−γ0t − e−2γ0tÞ: (3)

In order to relate these quantities to the scattered light in the
far field, we write the Glauber decomposition of the electric
field operator as [18,27] Êð−Þðr; tÞ ¼ ξwðrÞPnσ

þ
n ðt − tnÞ.

Here, ξ ¼ ω2
0=ð4πϵ0c2Þ (ϵ0 is the vacuum permittivity),

wðrÞ ¼ ½d − ðd · rÞr=r2�=r signifies the single-atom dipole
field pattern (d is the dipole moment, r≡ jrj), and tn ¼
jr − rnj=c≃ r=c − sinðβÞn=c is the retarded time for
a photon emitted by atom n. The detector positioned at r
is characterized by an observation angle β, where β ¼ 0
represents detection perpendicular to the atomic chain (see
also Fig. 1). Expanded in terms of eigenstates and exploiting
[28] Ŝk;0ðt−tnÞ≃exp½iΔk

0sinðβÞn=c�Ŝk;0ðt−r=cÞ as well
as ŜKν;kðt − tnÞ≃ exp½iΔKν

k sinðβÞn=c�ŜKν;kðt − r=cÞ, the
electric field operator takes the form

Êð−Þðr;tÞ¼ξwðrÞ
ffiffiffiffiffi
M

p
×
X
k

�
δk;½Δk

0
sinðβÞ=c�ð2π=aÞ Ŝk;0ðtretÞ

þ
X
Kν

δK−k;½ΔKν
k sinðβÞ=c�ð2π=aÞ

�
η̄ðKνÞðK=2Þ−k

��
ŜKν;kðtretÞ

�
;

(4)

where ΔKν
k ≡ ReðEð2Þ

Kν − Eð1Þ
k Þ, Δk

0 ≡ ReðEð1Þ
k Þ, and tret≡

t − r=c. In this expression, the Kronecker symbols are a
consequence of the lattice sum over all atom positions and
determine the allowed emission angles (½l�m signifies
l modulo m). To be precise, the decay of single-excitation
states jki → j0i requires ka ¼ 2π½ða=λatÞ sin β�1 (using
Δk

0 ≃ ω0), whereas for jK;BSi → jki we have ðK − kÞa ¼
2π½ða=λatÞ sin β�1 (using ΔK;BS

k ≃ ω0 þU and assuming
ω0 ≫ U). These expressions are reminiscent of Bragg’s
law and the emission angles are determined by matching the
wave numbers transferred to the free-space photon field. For
the remainder, k̄ ¼ k̄ðrÞ denotes the wave number that can
be detected at r (which allows us to set k ¼ k̄ in the first and
k ¼ K − k̄ in the second sum of Eq. (4), respectively). The
quantity η̄ðKνÞK=2−k in Eq. (4) is of central importance in this
paper and will be discussed later.
From Eq. (4), we can now construct arbitrary far-field

observables such as the intensity that can be obtained
for τ ¼ 0 from Ĝð1Þðr; t; tþ τÞ≡ Êð−ÞðtÞÊðþÞðtþ τÞ
[where ÊðþÞ ¼ ðÊð−ÞÞ†]. In the context of spontaneous
emission from a bound state [Eqs. (2) and (3)], the expectation
value Gð1Þðr; tÞ≡ hĜð1Þðr; t; tÞi ¼ tr½Ĝð1Þðr; t; tÞϱ̂� reads

FIG. 2 (color online). (a) Complex
two-excitation dispersion relation as a
function of the center-of-mass momen-
tum Kðλat=a ¼ 0.5Þ. The different black
and blue lines denote different relative
momenta p for the scattering states. The
bound states’ energies (real parts) are
detached from the scattering states.
(b) Simplified level scheme for ω0, U ≫
γ0 (see text for details).
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Gð1Þðr; tÞ
ξ2jwðrÞj2M ¼ 2bðK;BSÞ

k̄
ðe−γ0tret − e−2γ0tretÞ

þ
���η̄ðK;BSÞðK=2Þ−k̄

���2e−2γ0tret : (5)

To finalize this result, we now turn to the discussion of

the branching ratio bðK;BSÞk and the quantity jη̄ðK;BSÞ
K=2−k̄ j2, which

are intimately linked to each other. The contribution of the
decay path jK;BSi → jki to the overall decay rate depends
on the matrix element of the collective dipole moment
operator [21] D̂− ¼ ðg�μ=

ffiffiffiffiffi
M

p ÞPN=2
n¼−N=2 expð−iμanÞσ−n .

The wave number transferred to the photon field is μ ¼
K − k and gμ signifies the atom-photon coupling (which
can be considered being wave number independent across
the spectral window that is relevant here). Explicit calculation

of the matrix element gives hkjD−jK;BSi ¼ g�μη̄
ðK;BSÞ
K=2−k ,

where η̄ðK;BSÞq ¼ ð2= ffiffiffiffiffi
M

p Þ cosðqaÞ. As a result, we obtain

the branching ratio via bðK;BSÞk ¼ jhkjD−jK;BSij2=Pk0 ×

jhk0jD−jK;BSij2 ¼ ð1=2Þjη̄ðK;BSÞK=2−k j2. However, the quantity

jη̄ðK;BSÞK=2−k j2 has yet another precise physical meaning.
Considering the Fourier transform of the two-body wave
function, i.e., ð1=MÞPn1n2 expð−ik1an1Þ expð−ik2an2Þ×
ΦðKνÞ

n1n2 ¼ ð1=2Þη̄ðK;BSÞðk1−k2Þ=2δ½K−k1−k2�2π=a;0, shows that jη̄ðK;BSÞq j2
is the momentum distribution of the relative wave function.
For a bound state, this is a broad function in momentum
space since the relative wave function is tightly confined with
respect to the relative coordinate.
Inserting these expressions into Eq. (5), we arrive at

Gð1Þðr; tÞ
4ξ2jwðrÞj2 ¼ cos2

�
Ka
2

−
2πa
λat

½sin β�ðλat=aÞ
�
e−γ0tret ; (6)

which reveals that the temporal decay of the intensity in the
far field is monoexponential (rate γ0). As this would also be

observed for light emitted by a single-excitation state jki
[where Gð1Þðr; tÞ=jwðrÞj2 ∝ exp ð−γ0tretÞδkk̄ðrÞ], the tempo-
ral decay as such cannot serve as an unambiguous signature
for the existence of a bound state. However, the angle-
dependent emission pattern as shown in Fig. 3 is
a characteristic of the two-body bound state whose peculiar
features become most apparent when normalized to the
single-dipole pattern jwðrÞj2. Since the bound state sets
a minimal spatial scale (i.e., the minimal separation
a between two excitations), the momentum distribution
covers a finite window in momentum space, which trans-
lates into emission peaks having a finite width (as
a function of the emission angle). This is in stark contrast
to the sharp peaks that would be observed for a delocalized
single-excitation state.
Admittedly, the preparation of a pure eigenstate jK;BSi

may pose severe challenges from a practical point of view.
We therefore now demonstrate that the same characteristic
far-field signature of the two-body bound state can also be
obtained when the system is probed optically in a very
simple way. To this end, we envision a weak (i.e., strongly
attenuated) incoherent driving field (e.g., pseudothermal
light [29]) with a pump rate jPj2 and a spatial plane-wave
pattern. The projection of the external field’s wave vector
(magnitude kL) on the atomic chain “imprints” the wave
number kP ¼ ½kL sin βexc�2π=a (see Fig. 1) and we assume
kL ¼ 2π=λat. Aweak drive with Ξ≡ jPj2=γ0 ≪ 1 allows us
to work in the truncated Hilbert space of at most two
excitations. For an incoherent pump, the equations of motion
reduce to a set of rate equations [26], yielding the steady-
state occupation numbers (up to second order in Ξ ≪ 1)

NKν ≡ ϱKν;Kν ¼
Ξ2

2

���η̄ð2kP;νÞ0

���2δK;2kP ; (7)

Nk ≡ ϱk;k ¼ ΞδkkP þ Ξ2
X
ν

bð2kP;νÞk jη̄ð2kP;νÞ0 j2: (8)

FIG. 3 (color online). (a) Spontaneous emission patternGð1Þ=4ξ2jwj2 according to Eq. (6) (plotted for tret ¼ 0 andK ¼ 0) as a function
of the detection angle β and the emission wavelength λat (in units of a). As λat=a increases, less Bragg orders become visible but the
width of the emission peaks increases. (b) Angle dependence of the emitted radiationGð1Þr2=4ξ2jdj2. The black dashed line indicates the
direction of the atomic chain and the blue line denotes the alignment of the dipole moments. The pattern exhibits a toroidal-like structure
(a remnant of the single-dipole pattern) with lobes resulting from the properties of the bound state’s momentum distribution.
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The external pump only directly drives single-excitation
states jk ¼ kPi such that states jk ≠ kPi are populated via
spontaneous emission of a two-excitation state j2kP; νi,
which is of order Ξ2. Furthermore, only two-excitation states
with K ¼ 2kP are excited (see Fig. 1).
The emission spectrum emerging under these condi-

tions is given by [30] Sðr;ωÞ ¼ 2Re½R∞
0 dτ expðiωτÞ×

hGð1Þðr; t; tþ τÞi�, which requires the calculation of the
two-time correlation Gð1Þðr; t; tþ τÞ. Employing the quan-
tum regression theorem [27] leads to

hGð1Þðr;t;tþτÞi
ξ2jwðrÞj2M ¼ e−iðω0þUÞτe−3

2
γ0τ
���η̄ð2kP;BSÞkP−k̄

���2N2kP;BSþ���.
(9)

Here, we have only specified the contribution from the
scattered field that oscillates with the frequency ω0 þ U
since we are now going to exploit the bound states’
separation in energy from the band of scattering states
(cf. Fig. 2). In other words, since U ≫ γ0, the correspond-
ing emission spectrum at the frequency ω0 þU has practi-
cally no overlap to transitions around ω0. Specifically,
measured at r (elevation β) and, for convenience, normal-
ized to the value recorded at a fixed direction r0 (jr0j ¼ jrj,
elevation βexc) in the y-z plane, we can write

Sðr;ω ¼ ω0 þUÞ
Sðr0;ω ¼ ω0 þUÞ

jdj2=r2
jwðrÞj2 ≃

���η̄ð2kP;BSÞkP−k̄

���2���η̄ð2kP;BSÞ0

���2

¼ cos2
�
kPa −

2πa
λat

½sin β�ðλat=aÞ
�
: (10)

This is the same signature as obtained in the context of
spontaneous emission from a pure eigenstate [see Eq. (6)],
even though here the external probing field is incoherent
and weak. Moreover, Eqs. (6) and (10) do not only
represent an explicit far-field feature for the existence of
a bound state on a lattice. These expressions can be utilized
to extract the relative wave function’s complete momentum

distribution jη̄ð2kP;BSÞq j2. This is achieved through tuning the
argument q ¼ kPðβexcÞ − k̄ðβÞ across the first Brillouin
zone by, for instance, varying the detection angle β while
keeping the excitation angle βexc fixed. The spectrum only
needs to be recorded at a single frequency (ω ¼ ω0 þU)
and the presented scheme does not rely on single-atom
addressability and/or manipulation techniques.
In conclusion, we have analyzed the signatures that

emerge from the excitation of a collective two-body bound
state on a lattice of atoms and found characteristic, angle-
dependent far-field features in the scattered light. For the
future, we plan to utilize the generic theoretical approach
presented in this work to also explore the radiative proper-
ties of scattering states and to analyze more sophisticated
excitation and detection schemes.
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