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We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-
Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-
wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence
on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the
disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch
oscillations, indicating the transition from regular to quantum chaotic dynamics.
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The response of a single particle in an ideal periodic
potential when subject to an external force constitutes a
paradigm in quantum mechanics. As first pointed out by
Bloch and Zener the evolution of the wave function is
oscillatory in time rather than linear, due to Bragg scatter-
ing of the matter wave on the lattice structure [1,2]. Yet, the
observation of such Bloch oscillations in condensed-matter
lattice systems is hindered by scattering of electrons with
crystal defects [3], which causes rapid damping of the
coherent dynamics, eventually allowing for electric con-
ductivity [4].
Ensembles of ultracold atoms prepared in essentially

dissipation-free optical lattices guarantee long enough
coherence times [5] to serve as ideal systems for the
observation of Bloch oscillations [6,7]. Furthermore,
unprecedented precise control over atom-atom interactions
in a Bose-Einstein condensate (BEC), via, e.g., Feshbach
resonances [8], allows us to engineer controlled coherent
dephasing of the atomic matter wave and even to cancel
interactions entirely. Bloch oscillations have been studied
with BECs in quasi one-dimensional "tilted" lattice con-
figurations created by a single retro-reflected laser beam
with typically thousands of atoms per lattice site [9]. Here,
comparatively weak interactions result in strong dephasing
observed in a rapid broadening of the atomic wave packet
in momentum space [10,11] and are understood by a
modification of the wave function in terms of a mean field
[12,13]. In contrast, for sufficiently tight confinement when
only single spatial orbitals are relevant, the microscopic
details determine the quantum coherent time evolution,
covered within the Bose-Hubbard (BH) model [14].
In this Letter, we study atomic Bloch oscillations in the

one-particle-per-site regime realized with a large ensemble
of 1D superfluid Bose gases trapped in an array of
“quantum tubes” and subject to a tilted optical lattice. In
particular, we observe regular interaction-induced dephas-
ing and revivals of the quantum matter-wave field for
strongly tilted lattices [15]. In contrast, for sufficiently

small values of the tilt, an irreversible decoherence of the
wave function in the presence of interactions is seen, giving
a strong indication for the onset of quantum chaos [16].
At ultralow temperatures, much below the lattice band

gap, our system is well described by the one-dimensional
BH Hamiltonian augmented by a tilt [14,15],

Ĥ ¼ −J
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As usual, â†i (âi) are the bosonic creation (annihilation)
operators at the ith lattice site, n̂i ¼ â†i âi are the number
operators, J is the tunnel matrix element, and U is the
on-site interaction energy. The linear energy shift from site
to site is denoted by E. Let us first discuss the case of a
strong force E ≫ J. For U ¼ 0 the energy spectrum is the
famous equidistant Wannier-Stark ladder, which gives rise
to a single frequency, fB ¼ E [17], contributing to the
dynamics of any arbitrary initial wave packet [18]. This is
the origin of Bloch oscillations for a wave packet in
momentum space that is periodically driven across the
first Brillouin zone and Bragg reflected at the zone edge
with the Bloch frequency fB [19]. An intermediate inter-
action energy U ≈ J causes splitting of the degenerate
energy levels of the Wannier-Stark ladder into a regular
pattern of energy bands and results in quasiperiodic
coherent decay and revival of the Bloch oscillations with
a new fundamental frequency frev ¼ U [15,16]. This can be
understood with the previous assumption of a strong tilt
(E ≫ J) for which the eigenstates of a single atom in
the lattice coincide with the localized Wannier states. The
Stark localization of the wave function together with the
discreteness of the site occupation number leads to an
evolution of the mean atomic momentum

hpiðtÞ ∝ exp f−2n½1 − cosð2πfrevtÞ�g sin ð2πfBtÞ; (2)
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where n denotes the mean occupation number per lattice
site [15,20]. Note the close analogy of the dynamical
evolution to the experiment of Ref. [21]. For the sake of
completeness, we stress that for sufficiently strong inter-
action energy (U ≫ J) and sufficiently small tilt (E ≪ U),
the ground state is a Mott insulator for one-atom com-
mensurate filling, which shows resonant tunneling dynam-
ics when subject to a sudden tilt [22,23].
Our experiment starts with a BEC of typically 8 ×

104 Cs atoms prepared in the internal hyperfine ground
state jF ¼ 3, mF ¼ 3i and trapped in a crossed-beam
optical dipole trap [24,25]. The sample is levitated against
gravity by a magnetic field gradient of j∇Bj ≈ 31.1 G=cm.
The BEC is loaded adiabatically into an optical lattice of
three mutually orthogonal retro-reflected laser beams at a
wavelength of λl ¼ 2π=k ¼ 1064.5 nm within 500 ms.
During the lattice loading, the scattering length is
as ¼ 115a0. At the end of the ramp, the final lattice
depth is Vx;y ¼ 30ER in the horizontal and Vz ¼ 7ER
(J ¼ 52.3 Hz) in the vertical direction, where ER ¼
1.325 kHz is the photon recoil energy. This creates an
array of about 2000 vertically oriented 1D Bose-Hubbard
systems (“tubes”) at near unity filling that are decoupled
over the time scale of the experiment. The residual
harmonic confinement along the vertical z direction is
measured to νz ¼ 16.0ð0.1Þ Hz. We now ramp as slowly
(with ≈1.5 a0=ms) to values of typically 0 to 90a0 by
means of a Feshbach resonance [26], and thereby prepare
the 1D systems near the many-body ground state for an
on-site interaction energy U of typically 0 to 400 Hz. This
constitutes the initial condition for the observation of Bloch
oscillations. Bloch oscillations are then initiated by quickly
applying a gravity-induced tilt E ¼ 1740ð4Þ Hz through a
reduction of the magnetic levitation field, giving a Bloch
period TB ≡ 1=fB ¼ 575ð1Þ μs. After a variable hold time
th we switch off the lattice beams within 300 μs, remove
the tilt, and allow the sample for a free levitated expansion
of 30 ms to measure the atomic momentum distribution by
standard time-of-flight absorption imaging. During expan-
sion, as is set to zero to avoid any additional broadening
due to interactions.
First, we study a noninteracting sample by setting as ¼

0a0 to quantify the effect of the residual harmonic trapping
potential. Time-of-flight absorption images spanning one
Bloch oscillation cycle are shown in Figs. 1(a)–(c) after
th ¼ 0, 7, and 14 TB. Note that the aspect ratio has been
adapted for better visualization to compensate the faster
expansion transversal to the orientation of the tubes. The
typical linear motion of the atomic wave packet through
the first Brillouin zone together with Bragg reflections at
the zone edge shows a slow dephasing due to the harmonic
confinement. The mean atomic momentum hpi extracted
from time-of-flight images is depicted in Fig. 1(d) as a
function of th. We model the dephasing effect of the
harmonic trapping potential by a local variation of the

Bloch frequency over the extent of the initial wave
packet [27].
To demonstrate the effect of atom-atom interactions on

the dynamics, we repeat the above measurement now with
the sample prepared at as ¼ 21.4ð1.5Þa0, corresponding to
U ¼ 102ð8Þ Hz. Analogously to the previous measure-
ment, time-of-flight images of full Bloch oscillation cycles
after th ¼ 0, 7, and 14 TB are shown in Figs. 1(e)–(g). In
contrast to the noninteracting sample, we observe a rapid
initial decay of the Bloch dynamics, resulting in a spread-
ing of the atomic cloud over the entire Brillouin zone; see
Fig. 1(f). Following the dynamical evolution we find a near
perfect recovering of the Bloch oscillations, as evident from
Fig. 1(g). This arises from the strong coherent dephasing of
the initial atomic wave packet in the presence of atom-atom
interactions discussed above, leading to a subsequent high
contrast matter-wave phase revival. The mean atomic
momentum hpi as a function of th is plotted in Fig. 1(h)
and fit by the model function Eq. (2), including the overall
decaying envelope discussed above to account for the
residual harmonic trap [27]. We do such measurements
at different values for as. The values for frev and fB
extracted from the two-mode fit function are depicted in
Fig. 2(a). While fB is not affected by interactions, frev
increases linearly with as and is in good agreement with the
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FIG. 1 (color online). Interaction-induced collapse and revival
of atomic Bloch oscillations in a large ensemble of 1D tubes. The
lattice depth along the tubes is Vz ¼ 7ER (J ¼ 52.3 Hz). Time-
of-flight absorption images of one Bloch cycle are shown after
th ¼ 0, 7, 14 TB for zero interaction (a–c) and for as ¼
21.4ð1.5Þa0 (e–g), respectively. The vertical bar in (a) indicates
the extent of the first Brillouin zone. Full time evolution of the
mean atomic momentum is shown for zero interaction (d) and for
as ¼ 21.4ð1.5Þa0 (h). Solid lines are fits to the data using the
analytic model function (see text). The shaded areas indicate the
data points shown in the time-of-flight pictures.
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prediction for U calculated from lowest-band Wannier
functions [14]. Two additional data sets showing the
evolution of the atomic sample in the tilted lattice are
shown in Figs. 2(b) and 2(c) for intermediate and com-
paratively strong interaction energy, respectively, in order
to demonstrate the experimental robustness of the quantum
phase revival. While we find clear separation between the
time scales given by fB and frev and observe four distinct
decay and revival periods of the matter-wave packet in
Fig. 2(b), Bloch and revival periods start to mix when U is
increased to ≈E=3 in Fig. 2(c). Interestingly, the model
function, Eq. (2), still provides a surprisingly precise fit to
the data. Note that our technique allows the direct meas-
urement of the Bose-Hubbard interaction parameter U in
the superfluid regime down to very small values, limited
only by the residual external confinement.
So far, we have restricted the discussion to large values

of the tilt. In the remainder of this letter, we study Bloch
oscillations in the regime when all energy scales in the BH
Hamiltonian are of comparable magnitude, E ≈ J ≈ U.
Consequently, it is impractical to assign a meaningful set
of quantum numbers to the energy levels in a perturbative
approach. Instead, the energy spectrum emerges densely
packed and requires a statistical analysis, revealing the
onset of quantum chaos in a Wigner-Dyson distribution of
the energy level spacings for sufficiently small E [16]. The
transition from the regular to chaotic regime is predicted to
become manifest in a rapid irreversible decoherence of
Bloch oscillations within a few oscillation cycles. To probe
this regime, we prepare the sample in a more shallow
lattice Vz ¼ 4ER (J ¼ 114.2 Hz) at a fixed value of
U ¼ 106ð8Þ Hz, and we now vary E. Two example data
sets are shown in Fig. 3(a) taken at E ¼ 855ð15Þ Hz and
266(5) Hz, respectively, which show very different

qualitative behaviors. For the strongly forced lattice we
clearly identify the regular decay and revival dynamics
described above. In contrast, for smaller E the revival,
expected to appear at th ¼ 1=U, is missing. Instead, we
observe a single, rapid irreversible decay of Bloch oscil-
lations. This observation is quantified in two ways. First,
we fit the initial decay in our data to a decaying sinusoid
with an envelope ∝ expð−t=τÞ. The extracted Bloch fre-
quency fB and the exponential decay time τ as a function of
E are plotted in Figs. 3(b) and 3(c) (circles). Second, we
extract the amplitude of the revival δp in momentum space
[28] and show it in Fig. 3(c) (triangles). As expected, fB is
directly given by E. Further, τ is found to be constant for
E≳ 600 Hz; it quickly increases and finally saturates for
E≲ 400 Hz. The revival signal δp exhibits an opposite
behavior and decreases with decreasing tilt.
We interpret our data as a strong indication for the

transition from the regular to the quantum chaotic regime.
For large E=J ≳ 6, we find a coherent dephasing and

(c)
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FIG. 2 (color online). Dependence of the revival frequency frev
on the on-site interaction energy U. (a) Extracted frev (circles)
and Bloch frequency fB (triangles) from model fits of Eq. (2) to
time traces hpiðthÞ as shown in Fig. 1 as a function of as. Error
bars are smaller than the data points. The shaded gray area depicts
the calculated U, taking into account a 5% error on the lattice
depth. The solid line denotes a constant fit to the data for fB.
Mean atomic momentum as a function of hold time for as ¼
40.6ð1.5Þa0 (b), giving U ¼ 194ð10Þ Hz, and as ¼ 111.5ð1.5Þa0
(c), giving a comparatively largeU ¼ 533ð15Þ Hz. Solid lines are
fits to the data based on Eq. (2).

(a)
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FIG. 3 (color online). Transition from regular to chaotic
dynamics when varying the tilt E. (a) Mean atomic momentum
as a function of hold time for E ¼ 855ð15Þ Hz (triangles) and
E ¼ 266ð5Þ Hz (squares) at as ¼ 26.9ð1.5Þa0. Here, Vz ¼ 4ER
(J ¼ 114.2 Hz), giving U ¼ 106ð8Þ Hz. Solid lines show fits to
the data based on the analytic model function, Eq. (2), in the
strong-forcing limit and an exponentially damped sinusoidal in
the chaotic regime. The two data sets are offset for clarity. Bloch
frequency fB (b) and exponential decay time τ (c) as a function of
E (circles) extracted from exponentially damped sinusoidal fits to
the initial decay in data sets as depicted in (a). Triangles in (c)
depict the amplitude of the revival δp as a function of E. The
dashed line in (b) is a linear fit to the data. The dashed lines in (c)
are error-function fits to the data to guide the eye. The shaded
areas indicate the prediction from numerical simulations with 1 ≤
n ≤ 1.4 [27].
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revival of Bloch oscillations with a characteristic dephasing
time scale that is solely given by U and not affected by
the strength of the tilt, as expected from Eq. (2). With
decreasing E, the revival continuously disappears, accom-
panied by a significant change of τ, indicating the onset of a
regime where the system dynamics decay irreversibly for
E=J ≲ 3. A spectral analysis of the tilted BH model for our
system parameters (n ≳ 1) reveals the onset of Wigner-
Dyson statistics in agreement with the observed crossover
in τ [27]. In addition we compare our data in Fig. 3(c) to
results obtained from numerical simulations of Bloch
oscillations within the BH model, indicated by the shaded
areas. We emphasize again that the irreversible decay is due
to interaction-induced decoherence in the system arising
from the multitude of avoided crossings in the chaotic level
structure of the many-body energy spectrum and ought to
be contrasted from a coherent dephasing, as observed for
E ≫ J [16]. In this sense, the atomic ensemble itself acts
as the bath responsible for decoherence of the quantum
many-body system [29,30].
Finally, we report on a last set of measurements to

emphasize the role of interactions on the irreversible decay
discussed above. We study Bloch oscillations for a fixed tilt
E ¼ 346ð10Þ Hz at Vz ¼ 4ER (J ¼ 114.2 Hz) and vary U.
Three example data sets are shown in Fig. 4(a). We identify
an overall irreversible decay indicative of the chaotic
regime. Moreover, the decay rate strongly depends on
the interaction strength and decreases with decreasing U.
This is expected from the noninteracting limit U → 0, for
which the system turns regular again. Note that the
observation of decay rates ≲70 Hz is currently limited
by the overall dephasing due to the presence of the
harmonic trap discussed above. We extract the decay rate

1=τ as before and plot it as a function of U in Fig. 4(b). Our
data reveal a saturating monotonic increase of 1=τ with U.
Scaling of the decoherence rate with U is expected to
change from a quadratic (regular regime) to a square-root
(chaotic regime) dependence [31], indicated by the dashed
line in Fig. 4(b) [27]. However, a precise experimental
confirmation requires compensation of the harmonic trap to
allow for longer observation times of the Bloch oscillations
and will be the issue of a forthcoming experiment.
In conclusion, we have studied Bloch oscillations in the

context of a strongly interacting many-body system prop-
erly described within the Bose-Hubbard model. In this
regime the "granularity" of matter in combination with
strong atom-atom repulsion causes coherent quasiperiodic
decay followed by a high contrast quantum phase revival of
the Bloch oscillating matter-wave field. The revival period
is entirely determined by the interaction strength and thus
provides a direct, precise measure for the on-site interaction
energy in the superfluid regime, in contrast to a related
technique to measure U in a Mott insulator [32]. For
practical applications we point out that the phase revivals
effectively extend the observation time of Bloch oscilla-
tions even in the presence of interactions with potential
prospects to e.g., precision force measurements [33,34].
Further, we have investigated the Bloch dynamics of the
interacting atomic ensemble as a function of the applied tilt
and found clear evidence for the transition from regular to
quantum chaotic dynamics. Our results may open the
experimental study of quantum chaos in such systems,
including its implication on the decoherence and thermal-
ization of interacting 1D quantum many-body systems
[29,30,35]. Moreover, quantitative studies on the parameter
dependence of the transition from the regular to the
quantum chaotic regime are of interest [36].
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