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The recent BICEP2 measurement of B modes in the polarization of the cosmic microwave background
suggests that inflation was driven by a field at an energy scale of 2 × 1016 GeV. I explore the potential of
upcoming cosmic microwave radiation polarization experiments to further constrain the physics underlying
inflation. If the signal is confirmed, then two sets of experiments covering a large area will shed light on
inflation. Low-resolution measurements can pin down the tensor to scalar ratio at the percent level, thereby
distinguishing models from one another. A high angular resolution experiment will be necessary to measure
the tilt of the tensor spectrum, testing the consistency relation that relates the tilt to the amplitude.
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TheBICEP2 experiment [1,2] has detected theBmodes of
polarization in the cosmic microwave background (CMB), a
signature [3,4] of primordial gravitational waves generated
during inflation [5–9]. If these results are confirmed and
are indeed due to inflation, then the energy scale responsible
for the early epoch of acceleration is 2 × 1016 GeV, some
13 orders of magnitude above energy scales probed in the
largest colliders today.
The result is stunning with far-ranging implications.

Here I focus on what comes next: What can we learn about
this new physics from the next generation or two of CMB
polarization experiments? Although this topic has been
addressed before [10–15], we are now (probably) in a new
era, in which we know the amplitude of the signal and so
are standing on firmer ground.
My conclusions are that we are about to embark on a

three-step journey that can potentially uncover the laws of
physics at ultrahigh energies using CMB polarization:
The first step is to confirm the BICEP2 result and determine
the amplitude of the gravitational wave signal. There are
several ways to do this. The most comforting would be a
detection by the Planck satellite of the first B-mode peak
on large scales. BICEP2 is not sensitive to this reionization-
induced signal, so a detection would complement and
confirm with little doubt that we have indeed observed
primordial gravitational waves. Another test would be a
detection with one of the other ground-based experiments,
especially if the measurement were made in a different part
of the sky and at a different frequency. In short, there are
three axes along which we can move to confirm the
BICEP2 result: angular frequency to detect the distinctive
two-humped signal, photon frequency to eliminate the
possibility of foreground contamination, and sky coverage
again to mitigate foregrounds. For the next two steps to
move forward, this first stage needs to conclude with the
removal of the tensions between different data sets that

predate not only BICEP2, but even Planck [16,17]. If these
tensions remain, the resolution may require ways of under-
standing the responsible physics beyond those outlined
below, e.g., bumps in the primordial power spectrum
[18,19]. I will have nothing to say here about this stage,
except the obvious: It is very important.The second stage
will be to measure the tensor to scalar ratio r and the
spectral index of the scalar perturbations, ns, with increas-
ing accuracy. Models make predictions in the ns, r plane
[12,20–27], and increasing precision can help identify the
correct model. Indeed, a host of models are already ruled
out if r is close to 0.2 as suggested by the BICEP2 results.
There are plans to reduce the errors on ns by a factor of 5 by
using galaxy surveys [28], and future CMB polarization
experiments can reduce the error on r to the percent level.
As we will see (e.g., Fig. 3), this can be done mostly by
increasing the sky coverage (BICEP2 covers less than a
percent of the sky) even with a relatively large beam. This is
easier said than done, of course, because BICEP2 looked
at a low-foreground region, so this next generation of
experiments will likely need to be equipped with multiple
frequency channels in order to disentangle the signal from
the foregrounds. A very important physical question under-
lying model choice is why the “simplest model,” with the
field driving inflation subject to a quadratic potential,
seems to fit the data. Everything we know about effective
field theory tells us that, since the field traverses a large
distance in Planck units, higher-order terms should be
generated in the effective action, completely changing the
simple dynamics of an m2ϕ2 term. Different solutions to
this problem make different predictions in the ns, r plane.
Therefore, this “simple fits, but simple does not make
sense” quandary may be resolved by obtaining greater
precision in the (ns, r) plane. The third stage will be to
measure the tilt of the spectrum of the tensor perturbations,
nt, and test the prediction that nt ¼ −r=8 [29]. As we will
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see (e.g., Fig. 7), carrying out this program will require
exquisite “cleaning” of the B-mode signal from lensing
[30–32] and thereforewill require small-scale resolution, low
noise, and large sky coverage. Even if all these are achieved,
the conclusion thatnt will bemeasured to be nonzero rests on
the assumption that r is large. Ifwe find in step 1 that r ¼ 0.1,
it will become virtually impossible (Fig. 6) to detect nonzero
nt at even the 2-sigma level, although there is still an
enormous amount of physics that can still be gleaned from
high-resolution polarization experiments.
It is unlikely that these steps will occur sequentially: We

should expect progress on all three fronts over the coming
decade.
To quantify these conclusions, I project constraints from

polarization experiments in the two-dimensional r, nt
plane. The errors on CBB

l , sample variance and noise, are
computed by using the standard formula [15,33]. On small
scales, this simple formula captures the noise reported by
BICEP2 [1,2] with sky coverage set to 384 square degrees,
noise per square degree pixel set to 0.087 ×

ffiffiffi

2
p

μK, and
beam width equal to 300 FWHM. The formula under-
estimates the noise in BICEP2 at low l probably because it
does not account for low l removal from filtering, so the
estimates presented here may be a bit optimistic. On the
other hand, the projected error on r using this Fisher form-
alism is only 20% smaller than that obtained by BICEP2
in their analysis. As we will see, a 20% difference does not
matter much for the calculations in the next section, where
the marginalized constraints on r are displayed, and in
following section, where the constraints on nt are examined;
most of the weight comes from small scales where the
formula agrees well with the BICEP2 errors.
Inflationary models.—By way of orientation, let us

first consider the constraints on the tensor to scalar ratio
r (after marginalizing over the tilt nt) from a perfect CMB
polarization experiment that covers the whole sky with zero
instrumental noise. Figure 1 projects the constraints on r
from such an experiment as a function of the maximum l
used (the smallest scale) and the minimum l. The mono-
tonically increasing solid blue curve shows that the con-
straint on r comes from multipoles l < 150. This flattening
is due to noise from the lensed E modes, which is not
cleaned in Fig. 1. The take-away is that—even with no
cleaning—an all-sky, low-noise, low-resolution experiment
could obtain percent level constraints on r. The dashed
curve shows that this conclusion changes quantitatively but
not qualitatively if r is smaller than the central value of 0.2
reported by BICEP2. The information at low l is cosmic
variance limited, so r=Δr is independent of r in that regime.
The red monotonically decreasing curve in Fig. 1 shows
that percent level accuracy is still possible even if the first
hump at l < 10 is not measured. That is, even if lmin is of
the order of 50, the constraints on r would still be tighter
than 2%, again in this ideal case.
There are a variety of ways to clean the noise created

by the lensed E modes. Most powerful is to measure the

polarization on small scales, estimate the projected gravi-
tational signal from these measurements, and then subtract
off the synthetic lensed E modes. There are other ways to
estimate the gravitational potential, for example, from the
CMB temperature field [34–36] or from galaxy surveys
[37]. A number of groups [30–32] have argued that
cleaning the lensed E modes with internal small-scale
polarization maps or external maps of large-scale structure
could reduce the lensing noise (the amplitude squared) by a
factor of 10 or better. Figure 2 shows the ensuing
projections, again for an all-sky—no-noise hypothetical

FIG. 2 (color online). Optimal limit on r assuming full sky
coverage and zero instrumental noise if there is 5% cleaning of
the lensing contamination.

FIG. 1 (color online). Optimal limit on r assuming full sky
coverage and zero instrumental noise if there is no cleaning of
the lensing contamination. Dashed curves are for r ¼ 0.1; solid
curves are for r ¼ 0.2. Monotonically increasing blue curves
show the constraints if only multipoles l < lmax are used;
apparently, multipoles greater than 150 do not contribute to
the constraints. Monotonically decreasing red curves show the
constraint if only l > lmin are used, showing that the large-scale
reionization bump at l < 10 is not crucial for obtaining tight
constraints on r.
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experiment, if the lensed E-mode spectrum could be
reduced by a factor of 20. The signal to noise would go
up a bit, but the general conclusion that only large scales
contribute to the constraints remains unchanged.
We are currently far from this ideal experiment. Figure 3

shows what is needed to get to the percent level. Most
important is to obtain more sky coverage. The BICEP
sensitivity is adequate as long as more of the sky is
measured. If foregrounds were not a problem, then 100
copies of the BICEP2 configuration would suffice to obtain
a measurement of r with 2% errors. Finding the optimal
frequency coverage and experimental configuration to
measure more of the sky will likely consume the commu-
nity as the dust settles on the BICEP2 result.
Figure 4 shows that the beam is one parameter that is not

essential. A degree beam (twice the size of the BICEP2
beam) would produce constraints comparable to those

shown in Fig. 3, where the beam was assumed to have
infinite resolution. This follows directly from the observa-
tion that most of the information on r lies in the multipole
range l < 150. Apart from cleaning the lensing signal, there
is no reason to measure on very small scales if the goal is to
obtain tight constraints on r.
Tilt.—Measuring the amplitude of the gravitational wave

signal is qualitatively different than measuring its spectral
shape. We quantify the shape of the spectrum with a power
law index, so that k3PgwðkÞ ∝ knt . In slow roll models of
inflation that are driven by a single scalar field, both r and
nt are proportional to ðV 0=VÞ2, where V is the potential of
the inflation field and V 0 is its derivative with respect to the
field. So in most models, nt is predicted to deviate from
zero, equal to −r=8.
Measuring the shape of the spectrum requires a long

lever arm, so a wider range of angular scales is necessary.

FIG. 3 (color online). Signal to noise on r as a function of pixel
noise and sky coverage. The BICEP2 specs are in the upper left at
the starred point. Here r ¼ 0.2 is assumed.

FIG. 4 (color online). The same as Fig. 3 but with a low-
resolution beam θFWHM twice as large as that employed in the
BICEP2 experiment.

FIG. 5 (color online). Optimal limit on Δnt assuming full sky
coverage and zero instrumental noise if there is no cleaning of the
lensing contamination.

FIG. 6 (color online). The same as Fig. 5, but this time assuming
the lensed signal can be cleaned at the 5% level. Dashed curves
show the projected constraint on nt if the true value of r is 0.1.

PRL 112, 191301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
16 MAY 2014

191301-3



This can be seen in Fig. 5, where—in contrast to informa-
tion localized at l < 150 for the amplitude—multipoles
as large as l ∼ 300 contribute to the signal to noise on nt.
Even for this optimal—all-sky, no-noise—idealization, the
detection of nonzero nt would be at only 1 sigma. The
contamination from the lensed E modes is particularly
damaging, as it impedes the use of the smaller angular
scales necessary to measure the tilt of the spectrum.
Figure 6 shows how the situation improves if the lensing

contamination can be removed. If 95% of the lensing
spectrum can be removed, then Fig. 6 shows that the
projected error on nt moves above 3 sigma, again for this
optimal configuration. An important feature of this plot is
that a significant detection depends sensitively on the value
of r. The dashed curves show that, even with 5% cleaning
in an all-sky configuration, CMB polarization cannot detect
at more than 1 sigma the deviation of nt from zero if the true
value of r is 0.1.
Figure 7 shows how far we have to go before reaching

this signal to noise. A fair fraction of the sky must be
covered with exquisite sensitivity, an order of magnitude
more sensitivity than BICEP2. On the bright side, the
required noise levels do indeed project [31,32] to clean the
lensing noise to better than 5%.
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Note added.—Recently, Ref. [29] appeared, which has
overlap with these results. Their results appear to agree
with these when comparison is straightforward.
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