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In recent years quantum simulation has made great strides, culminating in experiments that existing
supercomputers cannot easily simulate. Although this raises the possibility that special purpose analog
quantum simulators may be able to perform computational tasks that existing computers cannot, it also
introduces a major challenge: certifying that the quantum simulator is in fact simulating the correct
quantum dynamics. We provide an algorithm that, under relatively weak assumptions, can be used to
efficiently infer the Hamiltonian of a large but untrusted quantum simulator using a trusted quantum
simulator. We illustrate the power of this approach by showing numerically that it can inexpensively learn
the Hamiltonians for large frustrated Ising models, demonstrating that quantum resources can make
certifying analog quantum simulators tractable.
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Quantum information processing promises to dramati-
cally advance physics and chemistry by providing efficient
simulators for the Schrödinger or Dirac equations [1–3].
This is important because conventional methods are inef-
ficient, scaling exponentially in the number of interacting
subsystems. Consequently, quantum simulations beyond a
few tens of interacting particles are generally believed to be
beyond the limitations of conventional supercomputers.
Although digital quantum simulation is currently limited
to systems that can easily be simulated using a laptop [4],
current analog simulators already can simulate systems that
are difficult to simulate using existing supercomputers
[5–7]. A major objection to this avenue of inquiry is that
analog simulators are not necessarily trustworthy [8,9] and
certification of them is not known to be efficient. Without
such certification, an analog simulator can at best only
provide hints about the answer to a given computational
question. A resolution to this problem is necessary if analog
quantum simulators are to compete on an even footing with
supercomputers.
This issue is equally important to the problem of

quantum hardware validation, where the goal is to decide
whether a quantum device is actually implementing
the intended quantum dynamics. Without a way to practi-
cally characterize the dynamics of a large quantum
system, it is difficult to imagine how to build gates to
the exacting tolerances required for fault tolerant quantum
computation. Our work provides a new way to leverage
quantum resources to make characterization practical, and,
in turn, to enable the validation of quantum simulators
and devices.

There has been substantial progress towards finding an
efficient resolution to related problems using tomographic
methods [10,11], and recently machine learning and stat-
istical inference methods have been introduced [12–19]
to address similar problems in metrology or Hamiltonian
learning. Yet none of these approaches provide an efficient
and robust method for characterizing generic Hamiltonian
dynamics. We overcome these challenges by providing a
robust method that can be used to characterize unknown
Hamiltonians by unifying statistical inferencewith quantum
simulation. The key insight behind this unification is that
Bayesian inference reduces the problem of Hamiltonian
estimation to a problem in Hamiltonian simulation that can
be efficiently solved using a trusted quantum simulator.
Our algorithm achieves this through the following steps.

(i) The user begins by positing a Hamiltonian model for the
system and a probability distribution over the parameters
of the Hamiltonian model. Specifically, each hypothetical
HamiltonianHj is represented by a vector of d real numbers
~xj, such that Hj ¼ Hð~xjÞ. The Hamiltonian model is there-
fore specified by Hð~xÞ. The prior distribution is input using
a finite particle approximation known as the sequential
Monte Carlo approximation (SMC). (ii) The algorithm
adaptively chooses experiments based on the current uncer-
tainty in the Hamiltonian. The experiment is then performed
and the trusted quantum simulator is used to efficiently
compute the likelihood of the measurement outcome occur-
ring if each hypotheticalmodelwere true. (iii) The algorithm
then updates its knowledge of theHamiltonian parameter via
Bayes rule, resulting in an updated probability distribution,
called the posterior distribution. Steps (ii) and (iii) are then
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repeated until the uncertainty in the unknown Hamiltonian
parameters becomes small. This iterative process is given
in Fig. 1.
We consider three classes of inference experiments given

an initial state jψi (typically a pseudorandom state [20]):
(a) classical likelihood evaluation (CLE), (b) quantum like-
lihood evaluation (QLE), and (c) interactive quantum like-
lihood evaluation (IQLE). CLE is the simplest of these
experiments, as it involves only classical resources, and is
discussed in detail in [17]. It involves simply picking an
experimental time t, and computing the likelihood
PrðDj~xiÞ ¼ jhDje−iHð~xiÞtjψij2 using a classical computer,
whereD is the experimental outcome. This function, known
as the likelihood function, is not generally efficient on a
classical computer because it involves quantum simulation.
InQLEexperiments, a trusted quantumsimulator is used to

ameliorate these problems. It does so by estimating PrðDj~xiÞ
to be the fraction of times outcomeD occurs in a sufficiently
large set of simulated experiments, which is efficient if
PrðDj~xiÞ is only polynomially small. This approach allows
a complex quantum simulator, such as a fault tolerant
quantum computer, to act as a certifier for an uncharacterized
quantum device. A trusted quantum simulator could also be
constructed using a bootstrapping protocol, wherein a smaller
trusted analog simulator is the certifier. This is possible if a
compressed simulation scheme [21] for the dynamics exists,
which is typical for local systems [10,11].
The Loschmidt echo famously shows that, for complex

quantum systems, two nearly identical Hamiltonians will
typically generate evolutions that diverge exponentially
after a short time, before saturating at an exponentially
small overlap. For example, if a Hamiltonian Hb ∈ CN×N

differs from a Hamiltonian Ha by an amount that is large
compared to the characteristic scale of its eigenvalue gaps
and Ha has complexity that is characteristic of canonical
random matrix ensembles, then there exists times t1 and teq
such that [22]

jhψ jeiHate−iHbtjψij2 ∼

8><
>:

1 −Oðt2Þ if t < t1

e−OðtÞ if t ∈ ½t1; teq�
1=N for most t ≥ teq.

Hence, the simulated evolution and actual evolutions will
vary substantially in typicalQLE experiments if t is not short.
This is not ideal since (a) experiments with small t tend to be
uninformative [17] and (b) the exponentially small like-
lihoods that occur for t > teq cannot be efficiently estimated.

We resolve these issues by using interactive QLE experi-
ments, described in Fig. 2. The key point in IQLE experi-
ments is that if a state is evolved forward in time under H
and then backwards in time under H− then it will
approximately return to the initial state if ∥H −H−∥ is
small. Thus, even if the state vector is scrambled by the
forward evolution, inverting under a well chosen H− will
unscramble it, making PrðDj~xjÞ easy to estimate.
This provides a strong separation between the different

hypotheses in our prior distribution, since if the inverted
state is measured to be the initial state, we have strong
evidence that H ≈H−, since the Loschmidt echo gives the
probability of returning to the initial state for a bad choice
of H− to be approximately 1=N ≈ 0. By acting on the
quantum state output by the system under study, IQLE can
therefore be highly informative even when QLE is not, due
to effects like the Loschmidt echo.
We need to know that the experiment correctly evolved

the state under H− for such a test to be definitive. This is
achieved by SWAP ping the state in the untrusted system into
the trusted simulator, then evolving backwards according to
H− using the trusted simulator. The seemingly trivial SWAP

gate in Fig. 2 is actually key to IQLE, as it enables quantum
communication between the two registers. No SWAP gate is
needed in the likelihood estimation step since all evolutions
are performed using the trusted simulator.
More formally, an IQLE experiment is a two outcome

experiment: the final state is either measured to be jψi,
or it is not. The likelihood function is then completely
specified by Pðψ j~xÞ¼jhψ jeiH−te−iHtjψij2 and Pðψ⊥j~xÞ¼
1−jhψ jeiH−te−iHtjψij2. Furthermore, we can estimate how
rapidly the likelihood decays as t and ∥H −H−∥2 increase:

jhψ jeiH−te−iHtjψij ≥ 1 −Oð∥H −H−∥2Þt: (1)

If H− is within 1 standard deviation of H, by choosing
t ¼ 1=∥H −H−∥2, the likelihoods of both outcomes are
then Oð1Þ for the most likely models. This causes the

Perform experiment using 
particle guess heuristic

Estimated accuracy
suffcient?

No

Yes

Draw initial Monte
Carlo particles

Return estimate

Estimate likelihood using
 trusted quantum simulator

Perform Bayesian
update

FIG. 1. Flow chart for Hamiltonian learning algorithm.
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Untrusted 

FIG. 2 (color online). IQLE. (Upper) Circuit diagram for
drawing experimental data. (Lower) Circuit diagram for like-
lihood evaluation. QLE is similar but with H− ¼ 0, no SWAP gate
is used and the untrusted system is measured directly.
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experimental results to increase or decrease the posterior
probability of the most likely models by constant factors,
causing uncertainty in H to shrink exponentially with the
number of updates (if the likelihood function is not flat). We
show in the SupplementalMaterial [32] that these choices are
optimal for certain analytically tractable learning problems.
These values ofH− and t are difficult to compute directly

since H is unknown. We address this by using the “particle
guess heuristic” (PGH), which approximates H− and
∥Hð~xÞ −H−∥ by sampling. The PGH samples two particles,
~x− and ~x1 from the prior distribution Prð~xÞ. It then chooses
H− ¼ Hð~x−Þ and t ¼ 1=∥Hð~x1Þ −Hð~x−Þ∥2, which, for
linear models, can be approximated as t ¼ 1=j~x1 − ~x−j.
As the uncertainty in the estimated parameter shrinks, the
PGHwill tend to pick longer times to ensure that informative
experiments continue to be chosen as certainty about the
unknown parameters increases. In practice, this means that t
grows as 1=δ, similar to phase estimation.
The measurement outcomes yielded by the experiments

are immediately processed using Bayesian inference, as
described in Fig. 1. This accelerates the learning process
by allowing experiments to be chosen using the current
knowledge of the correct Hamiltonian. This state of knowl-
edge is represented by a distribution that is called, previous
to the next update step, the prior. In the cases we consider,
the initial prior distribution before any data is observed
is taken to be uniform. This encodes a state of maximum
ignorance about the correct ~x. The prior distribution is
updated as measurement outcomes are recorded using
Bayes’ rule, which gives the proper way of computing
the probability of each ~xj being correct given the observed
data and the prior. It states that if datum D is recorded then

Prð~xjjDÞ ∝ PrðDj~xjÞ Prð~xjÞ; (2)

up to a normalization factor. Here, Prð~xjjDÞ is called the
posterior distribution.
Equation (2) can be efficiently computed (for a poly-

nomial number of Hj) only if the likelihood function
PrðDj~xjÞ is tractable. Unfortunately, there is no known
efficient classical algorithm for computing PrðDj~xjÞ. Our
algorithm overcomes this by estimating the likelihoods
using output sampled from the trusted simulator. In
particular, for each ~xj, eiH−te−iHð~xjÞtjψi is simulated. The
resultant state is then measured and PrðDj~xjÞ is estimated
to be the fraction of times that outcome D is observed.
To reach an error within ϵ, it suffices to draw Oð1=ϵ2Þ
samples for each PrðDj~xjÞ. This removes the main obstacle
to using Bayesian methods to learn the correct ~x.
We make the update rule tractable by employing the

SMC approximation [17,23,24], which approximates the
prior as a discrete set of weighted point “particles” that
are adaptively moved so as to concentrate particle density
around regions of high probability. This procedure is
described in detail in the Supplemental Material [32].

The key advantage of our method is that the cost
of Hamiltonian inference on a fixed number of IQLE
experiments is exponentially smaller than the cost of
using CLE, which are the best known methods for
certain classes of problems [17]. A natural measure of
the cost is the number of quantum simulations needed to
estimate the Hamiltonian parameters. The total cost is,
therefore,

Cost ¼ NstepsðδÞ × Costðupdate; ϵÞ: (3)

Here, Nsteps is the number of updates needed to make the
uncertainty less than δ and Costðupdate; ϵÞ is the number of
samples from the trusted simulator that are needed to
update the particle weights using Eq. (2) within error ϵ in
the 1-norm. We show in the Supplemental Material [32]
that, with high probability, Costðupdate; ϵÞ scales at most as

jf~xigj
ϵ2

(EDjH

�
maxk PrðDj~xkÞð1 − PrðDj~xkÞÞ

ðPk PrðDj~xkÞ Prð~xkÞÞ2
�
): (4)

This implies that the update process will be efficient if the
number of particles required is small and the resultant proba-
bility distribution is not too flat. That is, jf~xigj ∈ O(polyðnÞ)
and

P
k Pr (DjHð~xkÞ) Pr (Hð~xkÞ) ∈ O(1=polyðnÞÞ, where n

is the number of interacting systems. SMCalgorithms require
a number of particles that scales subexponentially in d [25],
which may be independent of n. This means a small number
of particles are required in practice. The robustness of the
algorithm to sampling errors is discussed in [26] as well as in
the Supplemental Material [32], so relatively large ϵ can be
tolerated.
If the posterior distribution has converged to a uni-

modal distribution such that ~x is within a fixed distance
from the mean, then the PGH and (2) ensure that
EH−

½jhψ jeiH−te−iHtjψij2� ∈ Θð1Þ, since t ∈ Θðj~x − ~x−j−1Þ.
If a two outcome measurement is used then Markov’s
inequality implies that

P
kPr(DjHð~xkÞ)Pr(Hð~xkÞ)∈Θð1Þ

with high probability, implying efficiency. A similar result
holds if the effective number of outcomes,

P
j Pr ðjj~xkÞ−2,

is at most O(polyðnÞ) for each ~xk. In contrast, QLE
experiments may not lead to a superpolynomial separation
in the cost estimates for generic Hamiltonians and large t
because

P
k Pr (DjHð~xkÞ)Pr (Hð~xkÞ) ∈ 2−ΘðnÞ with high

probability for complex quantum systems [22,27]. This
can be rectified by choosing small t as per [10], but such
QLE experiments will be much less informative [17].
We can now bound the complexity of performing the

inference procedure given these assumptions. It is straight-
forward to show (see Supplemental Material [32]) that
the numerical error in the posterior mean is at most
maxi∥Hð~xiÞ∥ϵ. Hence, if we wish to learn Hð~xÞ to within
error δ it suffices to take ϵ ∈ Θ(δ=maxi∥Hð~xiÞ∥). Finally,
given that δ ∈ Oðe−γNstepsÞ, where γ is potentially a function
of ϵ and jf~xigj, (4) implies that the cost of QHL bounded
above by
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Costðinference; δ; γÞ

∈ O

�
logð1=δÞjf~xigjmaxk∥Hð~xkÞ∥2

γδ2

×

�
EDjH

�
maxk PrðDj~xkÞð1 − PrðDj~xkÞÞ

ðPk PrðDj~xkÞ Prð~xkÞÞ2
���

; (5)

also Costðinference; δÞ ∈ Ωðdlog2ð1=δÞÞ, since IQLE
yields one bit per experiment.
Consider the problem of learning Hð~xÞ using IQLE

experiments for an Ising model with no external field:

Hð~xÞ ¼
X

ði;jÞ∈G
xi;jσ

ðiÞ
z σðjÞz ; (6)

where G is the edge set of an interaction graph on n qubits.
Unless otherwise specified, we take xi;j ∈ ½−1=2; 1=2� uni-
formly at random and the initial state is jψi ¼ jþi⊗n. We
choose this Hamiltonian not only because it is physically
relevant [28], but also for numerical expediency, since QHL
requires thousands of simulated evolutions of the initial state.
All measurements are performed in the eigenbasis of X⊗n.
Figure 3 shows that the quadratic loss (a generalization

of the mean-squared error for multiple parameters) shrinks
exponentially with the number of experiments performed;
however, the rate at which the error decreases slows as
the number of qubits n increases. This is expected because
d ¼ nðn − 1Þ=2 for the case of a complete interaction
graph, which implies that the learning problem becomes
more difficult as n increases. The data for interactions on
the line are similar and are presented in the Supplemental
Material [32] and QLE data are given in the Supplemental
Material [32]. Only a few hundred IQLE experiments are
needed to learn the Hamiltonian within a quadratic loss of
10−2 or smaller for even a nine-qubit system.
The rate atwhich the learning process slows asn increases

is investigated in Fig. 4. We examine the slowing of the
learning problem by fitting the quadratic loss δ, in each
experiment toAe−γNsteps . Themedian decay exponent, which
is the median of the values of γ attained for a set of

experiments with constant n, measures the typical speed
with which QHL learns ~x. Figure 4 shows that these decay
constants scale as Oð1=dÞ for the complete graph and
the line. This implies that NstepsðδÞ ∈ Oðd logð1=δÞÞ for
this Hamiltonian, which implies that the inference is
efficient. Similarly, the PGH implies that the total simulation
time needed (for fixed jf~xigj) scales as Nstepsδ

−1 ∈
Oðdδ−1=2 logð1=δÞÞ, which is relevant if the cost of a
simulation is dominated by the evolution time.
In Fig. 5, we consider the case of the Ising model on the

complete graph where each of the xi;j is approximately the
same value chosen uniformly on [0,100], but with small
normally distributed fluctuations with mean 0 and variance
10−4. This causes the learningproblem to effectively transition
from d¼1 to d¼nðn−1Þ=2 once the small fluctuations need
tobe identified.The transitionhappens at δ≈d ×10−4≈10−3,
which coincides with the point when the slope in Fig. 5
changes. The cost of QHL therefore only implicitly depends
on n through d since γðn¼ 4Þ=γðn¼ 6Þ≈ 6 · 5=4 · 3 after
and γðn ¼ 4Þ=γðn ¼ 6Þ ≈ 1 before the transition.
Bayesian inference combined with the SMC approxima-

tion provides an ideal way to leverage a (potentially
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FIG. 3 (color online). The quadratic loss plotted as a function of
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nonuniversal) quantum simulator to characterize an
unknown or unreliable quantum system. We provide theo-
retical evidence that shows that the update rule, which
is at the heart of the learning algorithm, can be performed
exponentially faster using quantum resources. We also give
upper and lower bounds on the resources needed to estimate
the Hamiltonian using QHL and find numerically that QHL
using IQLE saturates the scaling predicted by the lower
bound in every example thatwe consider. These results show
that ourQHLprotocol is a powerful and practicalmethod for
inferring the dynamics of unknown Hamiltonian systems.
Looking forward, these results say something profound:

quantum simulation provides a new way to interrogate
quantum systems about their dynamics, thereby revealing
patterns that can be used to distinguish models in what
would otherwise seem to be random measurement out-
comes. Apart from providing efficient methods for model-
ing quantum systems, these ideas constitute a new way of
approaching physics wherein a quantum simulator is more
than just a computational device: it is also a powerful
experimental tool. Such tools give us the ability to address
open questions, such as how to certify analog quantum
simulators, and may also provide the first practical methods
for bootstrapping a large scale quantum computer, wherein
compressed quantum simulators actively control the
dynamics of the quantum computer. In short, by drawing
on insights from statistical inference, we show that quan-
tum simulation is a powerful experimental resource, and we
give an algorithm that exploits this resource to address
pressing and immediate problems.
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