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Using numerical simulations, the rheological response of an athermal assembly of soft particles with
tunable attractive interactions is studied in the vicinity of jamming. At small attractions, a fragile solid
develops and a finite yield stress is measured. Moreover, the measured flow curves have unstable regimes,
which lead to persistent shear banding. These features are rationalized by establishing a link between the
rheology and the interparticle connectivity, which also provides a minimal model to describe the flow
curves.
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In nature, soft disordered solids occur in different forms
(e.g., gels, emulsions, colloids, foams, grains, etc.) across a
wide range of packing fractions ϕ, which are made possible
by the tuning of particle interactions. The flow properties of
these soft materials have been harnessed for various appli-
cations, e.g., in the food or chemical industries. Thus,
understanding the role of particle interactions and the
corresponding mechanisms which lead to observed rheo-
logical behavior is an important recurrent theme.
For non-Brownian suspensions of frictionless repulsive

spheres, it is observed that ramping up the packing fraction
results in the occurrence of jamming at ϕ ¼ ϕJ [1,2]. The
rheological signature of the onset of jamming is the develop-
ment of a finite yield stress at ϕJ [3]. For Brownian
suspensions of such particles, it has been shown that a yield
stress exists at ϕ < ϕJ, due to the presence of thermal
vibrations [4]. A similar systematic investigation of how the
jamming paradigm is changing upon the introduction of
attractive particle interactions is still missing. It is known
that at smaller ϕ, such systems do exhibit finite yield stress
[5–8], but a quantitative bridge with the jamming scenario
needs to be developed.
Such studies are also needed since shear banding, the

phenomenon of spatially inhomogeneous flows observed in
many soft yield-stress fluids [9,10], has often been attrib-
uted to attractive interactions [6,11]. In general, persistent
occurrence of shear bands has been linked to nonmonotonic
constitutive laws leading to flow instabilities [9,12] (e.g., in
micelles [13]). It is not known how interparticle attractions
could result in such instabilities.
Conceptually, one can imagine the steady flowing state

to be a regime where there is a continuous competition
between the rupturing induced by shear and processes that
try to restore local structure. Theoretical models suggest
that nonmonotonic flow curves can occur due to long-lived
local fluidizations when the post-rupture restructuring takes
a very long time [14–16]. However, experiments and
numerical simulations have shown that for ϕ > ϕJ, no

such instabilities occur in the flow curve for either repulsive
or attractive systems [17–20]. The question now arises
whether, for ϕ < ϕJ, a short-ranged attraction which
introduces a new length scale for structure formation leads
to longer restoration time scales and if this is, indeed, the
origin of a shear banding instability.
In this Letter, we report a simulational study of the

variation in rheological behavior of an athermal assembly
of soft disks, near ϕJ, by the tuning up of attractive
interactions. We show that, for ϕ < ϕJ, minimal attractions
result in finite yield stresses. The variation of this threshold
with attraction and packing fractions can be rationalized in
terms of changing structure, viz. the number of contacts per
particle and its link with isostaticity. Further, we demon-
strate for the first time the existence of nonmonotonic flow
curves at these weak attractions, causing persistent shear
banding over a range of shear rates. Thus, our work reveals
new rheological behavior in the vicinity of ϕJ with the
introduction of attractive interactions and demonstrates
how the flow properties gradually deviate from that of
repulsive particles.
In our numerical simulations (using LAMMPS [21]), we

study a two-dimensional 50∶50 binary mixture of soft
disks, having a size ratio of 1.4. The disks interact via the
following potential, which can be considered to be a model
for cohesive grains or attractive emulsions [7,20]
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where dij ¼ ðdi þ djÞ=2, and di being the diameter of disk
i. Such a potential results in piecewise-linear interaction
forces. The strength and the range of the attractive forces
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are simultaneously tuned by varying u (see inset of Fig. 2 for
a schematic). We shear the system of particles at any
imposed shear rate _γ by using the appropriate Lees-
Edwards boundary conditions. During the flow, when two
particles overlap, they experience a dissipative force which
depends on their relative velocity: −b½ð~vi − ~vjÞ:r̂ij�r̂ij,
where b is the damping coefficient, and r̂ij is the unit vector
between particles i and j. We integrate the corresponding
Newton’s equations of motion for different system sizes
N ¼ 103, 104, 2 × 104 in order to explore the rheological
properties for a wide range of packing fractions ϕ. In our
simulations, the units for energy, length, and time are,
respectively, ϵ, ds, and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
md2s=ϵ

p
, where m is the mass of

the particles and ds is the diameter of the smaller particles.
Further, by our choices of m ¼ 1, ϵ ¼ 1, b ¼ 2, particles
undergo overdamped dynamics via inelastic colli-
sions [22,23].
First, we focus on how the flow curves (σ vs _γ) shape up

after the attractive interactions are introduced. In Fig. 1(a),
for a system size of N ¼ 103, we show the flow curves at
ϕ ¼ 0.82 (which is less than ϕJ ≈ 0.843). For the purely
repulsive system (u ¼ 0), we observe the usual Bagnold
scaling σ ∼ _γ2 [23]. As soon as the attraction strength is
finite, the particle assembly exhibits a finite (albeit small)
yield stress σy. The yield stress increases with increasing
attraction, which is expected. We also note that at larger _γ,
the flow curves for all attraction strengths collapse and are
identical to the repulsive case. Thus, attraction has an effect
only at small shear rates and the range over which this
change occurs increases with increasing attraction strength.
We will call these two regimes “attraction-dominated” and
“repulsion-dominated” flow in the following.

In Fig. 1(b), we show the variation of the flow curves
with packing fraction ϕ for a fixed u ¼ 2 × 10−4. We
observe that the system exhibits a finite σy at ϕmuch below
ϕJð≈0.843Þ. At ϕ > ϕJ, we observe the usual Herschel-
Bulkley form, consistent with previous work [20].
In both panels of Fig. 1, the flow curves are visibly

nonmonotonic, for either (a) low attraction strengths or (b)
low packing fractions. In both cases, there exists an
intermediate regime of shear rates, where shear stress is
a decreasing function of strain rate _γ. As discussed earlier,
such flow curves lead to localized shear bands; i.e.,
homogeneous flow is no longer possible.
It is known that under imposed _γ, shear band formation

can be avoided if the wavelengths of the unstable modes do
not fit into the lateral size of the simulation box [24]. Thus,
in our simulations, for a system size of N ¼ 103 (data in
Figs. 1–4), velocity profiles measured in the unstable
regime of the flow curve are seen to be linear, i.e.,
homogeneous flow is observed. However, when the system
size is increased to N ¼ 104, 2 × 104, the rapid formation
of permanent shear bands, in this regime, is observed.
Further, in this unstable part, when stress-controlled sim-
ulations are done, we observe either runaway flow towards
the stable high-shear rate branch or absorption into an
arrested state [25].
With the minimum in the flow curve being quite shallow,

the tendency to form shear bands in our system is weak.
This gives us a rare opportunity to study not only the
properties and formation of shear bands, but also the
underlying, nominally unstable, constitutive law.
By gathering data for different ϕ and u, we look at the

variation of the yield stress, σy ≡ σð_γ → 0Þ, which is
estimated from the stress at the smallest available strain
rate (_γ ¼ 10−6 or 10−7); this is shown in Fig. 2. For high
volume fractions ϕ and small attraction strength u—in the
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FIG. 1 (color online). Shear stress σ as a function of strain rate _γ
for N ¼ 103: (a) for different attraction strengths u (as specified
in the legends) at ϕ ¼ 0.82; (b) for different packing fractions
(from the bottom to top) ϕ ¼ 0.75, 0.78, 0.80, 0.82, 0.83, 0.84,
0.843, 0.85, 0.9, 0.95, 1.0 for the attraction strength
u ¼ 2 × 10−4. The solid lines are fits using the fluidity model
[Eq. (3)], the dashed lines are Herschel-Bulkley fits, and the
dotted lines are guides to the eye.
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FIG. 2 (color online). Variation of yield stress σy with packing
fraction ϕ for different attraction strengths (from bottom to top)
u ¼ 2 × 10−5, 4.5 × 10−5, 2 × 10−4, 4.5 × 10−4, 5 × 10−3,
5 × 10−2. Solid line: yield stress of the repulsive system

(u → 0) is expected to vanish at ϕ ¼ ϕJ as σðrepÞy ∝ ðϕ − ϕJÞα;
α ¼ 1.04. (Inset): schematic of the particle interaction force FðrÞ.
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repulsion-dominated regime—the yield stress is indepen-

dent of u and scales as σðrepÞy ∝ ðϕ − ϕJÞα. The fitted value of
the exponent α ≈ 1.04 is consistent with previous results for
purely repulsive particles [3], but likely suffers from finite-
size effects [26]. For strong attraction, the yield stress is only
weakly density dependent and scales linearly with the
strength of attraction, i.e., σy ∼ u. Such a property is trivially
expected from the rupture of a single element of strength u.
The new and nontrivial result is the regime at small u and

below the jamming limit (ϕ < ϕJ). There, a finite yield
stress is observed even at densities nominally far below ϕJ,
where the corresponding repulsive system is a normal fluid.
Thus, in weakly attractive systems, the crossover from
attraction-dominated to repulsion-dominated flow can also
be observed by increasing ϕ. Note the similarity with the
repulsive but Brownian system [4], where a crossover
occurs from a “weakly thermal” regime (ϕ < ϕJ) to an
athermal regime (ϕ > ϕJ).
What is the proper energy scale in the weakly attractive

regime? In order to answer this question, we first take a
look at the connectivity z, defined as the average number of
contacts per particle. In counting the contact number, we
include all nearest neighbors lying within the range of the
interaction potential. The typical variation of z as a function
of strain rate is shown in the two panels of Fig. 3 for (a)
fixed ϕ and (b) fixed u; the values of the different
parameters are the same as in Fig. 1.
We concentrate on small strain rates first. For the

repulsive particles, z → 0 at vanishing shear rates, as
expected for our model of inertial, dissipative dynamics
[23]. However, as soon as u is finite, z0 ≡ zð_γ → 0Þ jumps
to a finite value. In both panels of Fig. 3, we notice that z0

saturates at a value not much larger than the isostatic limit
ziso ¼ 4 as _γ → 0. Thus, minimal attraction leads to similar
isostatic structures as seen in the purely repulsive system
for ϕ ¼ ϕJ. The difference being that, here, isostatic
networks are observed over a range of volume fractions
and considerably below ϕJ. At high ϕ, the familiar scaling
law, z0 − ziso ¼ ζ0ðϕ − ϕJÞ1=2; ζ0 ≈ 3.78 [27] is recovered
[see Fig. 3(c)].
Previous work on packings of soft repulsive particles and

elastic networks [1] have shown how linear elasticity in the
near-isostatic regime can be understood in terms of the
deviation from isostaticity, δz ¼ z0 − ziso. It turns out that
we can use a similar reasoning to derive the scaling form for
the yield stress in the attraction-dominated regime to be

σðattÞy ∼ u1=2δz3=2 (see Supplemental Material [25]). With

this, and the repulsive yield stress σðrepÞy ∼ δϕαθðδϕÞ, the
overall yield stress can be written as follows:

σy=jδϕjα ∝
(
u1=2δz3=2=jδϕjα; σðrepÞy ≪ σðattÞy ;

1; σðrepÞy ≫ σðattÞy .
(2)

This scaling form is verified in Fig. 4(a), using the data for
σy shown in Fig. 2 and the corresponding data for z0. The
data collapse on the two branches defined by Eq. (2) is
excellent and holds over several orders of magnitude. We
also note some deviations for the smallest attraction
strengths and packing fractions.
We return to discussing the rheology at finite _γ, where a

similar link exists. As with the nonmonotonic flow curves,
we see a nonmonotonic behavior also in z vs _γ (Fig. 3). At
small strain rates, where σð_γÞ is decreasing, zð_γÞ quickly
drops to values far below ziso ¼ 4, before it rises again
following the repulsive branch.
Here, we see the manifestation of the two competing

mechanisms described in the introduction: shear-induced
rupture of the fragile near-isostatic network and attraction-
induced aggregation (see the supporting movies in the
Supplemental Material [25]). At small but finite _γ, the
imposed shear is not fast enough to efficiently destroy
the ever continuous restructuration. At large _γ, on the other
hand, the intrinsic relaxation time is too large to lead to the
buildup of a large aggregate.
To extract a characteristic time scale for this aggregation

process, we demonstrate that by using the scaling form
zð_γÞ ¼ z0 − _γτa, it is possible to collapse all the data for z
vs _γ in the regime of weak attraction [see Fig. 4(b)]. While
generating the scaling collapse, we obtain τa ≈ 0.5=u, for
the intrinsic time scale for restructuration. Thus, for weak
attractions, τa is large. Now, for shear banding to occur,
applied shear rates need to satisfy _γτa < 1. Hence, shear
banding can only be observed in the regime of small u,
which agrees with the flow curves of Fig. 1.
Moreover, we can use the attraction-dependent time

scale within a simple model to provide a reasonable fit
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FIG. 3 (color online). Variation of coordination number z as a
function of strain rate _γ (a) for different attraction strengths (u) at
ϕ ¼ 0.82 and (b) for different ϕ at a fixed u ¼ 2 × 10−4. The
values of u in (a) and ϕ in (b) are the same as those in Fig. 1.
Dashed lines are guides to the eye. (c) Variation of z0 ≡ zð_γ → 0Þ
with ϕ. The solid line denotes ðϕ − ϕJÞ1=2.
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to these flow curves. Based on the fluidity approach of
Picard et al. [28], we can derive (for details, see
Supplemental Material [25]) the following simple expres-
sion for the stress:

σð_γÞ ¼ σðattÞy
Wð_γτÞ
_γτ

þ σðrepÞð_γÞ: (3)

WðxÞ is the Lambert-W function, and the time scale is taken
to inversely depend on attraction strength τ ∼ u−1 (i.e.,
proportional to τa). The repulsive branch is assumed to
show Bagnold scaling, σðrepÞ ∼ _γ2. The underlying physics
of the model is the above mentioned competition between
shear-induced fluidization and intrinsic relaxation or aggre-
gation. Despite the simplicity of the model, the nonmono-
tonic flow curves can be fitted surprisingly well, as shown
in Figs. 1(a)–1(b). Nevertheless, the model cannot repro-
duce some details of the simulation data: for example, the
precise functional form in the limit of small _γ. The fluidity
model (as well as others [15,16,29]) gives σ → σy=ð1þ _γτÞ
for small _γ. The simulation data hint at a weaker (loga-
rithmic) dependence on strain rate in this limit. More work
is needed to resolve this issue, both from a theoretical point
of view and from the simulations.
The link between connectivity and flow is further

illustrated when, for a shear banded state, one measures
the spatial profiles of local shear rates and the correspond-
ing local connectivity. This is shown in Fig. 5, at a state
point fϕ; _γ; ug in the unstable regime of the flow curve [see
Fig. 1(a)] for a large enough system size and measured
during a long strain window. It is clear that the flowing
region has a low connectivity, while the arrested band is
nearly isostatic with z ≈ 4. Future studies should address
formation and properties of these shear bands.

To conclude, in the proximity of ϕJ, we have studied
how weak attractive interactions (u) change the rheological
properties of dense disordered assemblies of non-Brownian
particles. First, we rationalized the existence of finite yield
stresses below the (repulsive) jamming transition via a
scaling argument that exploits the near-isostatic nature of
the contact network, viz. σy ∼ u1=2ðz − zisoÞ3=2. Second, we
demonstrated the occurrence of nonmonotonic flow curves
indicating a shear banding instability. We showed that this
feature is a consequence of a long structural aggregation
time scale τ ∼ u−1, which can be extracted from the loss of
connectivity as the shear rate is increased. With this time
scale at hand, we set up a fluidity model to provide
reasonable fits to the nonmonotonic flow curves. Thus,
we established how the emerging rheological changes are
linked to properties of the contact network.
An expected consequence of the nonmonotonicity is that

static and dynamic yield stresses will be different (as, e.g.,
reported in Ref. [8]). However, the inverse does not
necessarily follow; i.e., a difference between static and
dynamic thresholds does not necessarily imply a non-
monotonic flow curve. Thus, independent studies using
imposed stress and imposed strain rate are necessary.
Future work should explore the impact of thermal

fluctuations on the rheological behavior observed by us,
thus, making the possible link with the flow behavior of
dense gel glasses. Also, studies should be extended to lower
packing fractions where more open-ended fragile networks
of the attractive particles are expected to occur [7,30]. In
parallel, systematic experiments are necessary at these
packing fractions in order to further test our findings.
While there have been recent experiments probing static
properties of jammed attractive assemblies [31] or their
shear moduli [32], more detailed rheological studies of
these dense fragile networks are necessary.
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