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We study a stochastic spatial model of biological competition in which two species have the same birth
and death rates, but different diffusion constants. In the absence of this difference, the model can be
considered as an off-lattice version of the voter model and presents similar coarsening properties. We show
that even a relative difference in diffusivity on the order of a few percent may lead to a strong bias in the
coarsening process favoring the more agile species. We theoretically quantify this selective advantage and
present analytical formulas for the average growth of the fastest species and its fixation probability.
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Different physical, social, and biological systems can be
described by models belonging to the voter model (VM)
universality class [1]. An important example in biology is
the neutral stepping stone model [2,3] whose dynamics
explains qualitative and quantitatively spreading and the
fixation of competing populations on a Petri dish [4,5].
In statistical physics, the VM is characterized by the exis-
tence of two symmetric absorbing states and a coarsening
process without surface tension. Its macroscopic dynamics
corresponds to the Langevin equation

∂tfðx; tÞ ¼ DΔf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γfð1 − fÞ
p

ηðx; tÞ; (1)

where D is the diffusion constant, Γ the noise amplitude,
and ηðx; tÞ is a δ-correlated white noise. In biological
applications, the field f usually represents the frequency
of an allele, i.e., the local fraction of individuals carrying a
given mutation. When mutants have a “selective advantage”
s over the wild type (i.e., a difference in reproduction rate),
an additional term appears in Eq. (1), which becomes a
stochastic version of the celebrated Fisher-Kolmogorov-
Petrovskii-Piscounov (FKPP) equation

∂tfðx; tÞ ¼ DΔf þ sfð1 − fÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γfð1 − fÞ
p

ηðx; tÞ: (2)

In the absence of noise, Eq. (2) predicts a well-defined range
expansion velocity of the mutants, v ¼ 2

ffiffiffiffiffiffi

Ds
p

[6,7]. The
same result is valid in the presence of weak multiplicative
noise, up to logarithmic corrections [8,9], while in the strong
noise regime one should expect a difference expression for
the velocity [10,11].
The stochastic FKPP equation is radically different from

the VM. For s > 0, Eq. (2) predicts f ¼ 1 to be the
deterministic asymptotic stable equilibrium of the system,
the state f ¼ 0 being unstable. One can think of s in a
similar way as the external field in the Ising model,
breaking the f ↔ ð1 − fÞ symmetry and thus driving the

system away from the critical point, which is recovered
for s ¼ 0. Often, the critical behaviors of the Langevin
equation such as variants of Eq. (1) can be understood by
analyzing their corresponding deterministic dynamics,
either by means of its associated mean field potential
[12] or by the Hamiltonian dynamics obtained by the path
integral formulations [13].
Because of the relevance of the VM in nonequilibrium

phenomena, it is interesting to understand whether there
exist more general, possibly nondeterministic mechanisms
to break the VM universality class. In biological terms, this
amounts to asking whether an effective selective advantage
can be achieved without any asymmetry in the birth and
death rates. For example, it has been recently shown [14]
that an asymmetry in the carrying capacity (i.e., the global
biological mass) of the two alleles can induce an effective
selective advantage.
In this Letter, we show that an effective selective

advantage emerges in a competition model between two
species diffusing at different speeds, but otherwise neutral.
In biology, this setting is relevant to assess the evolutionary
importance of movement, for example, in species which
exist in motile and nonmotile variants, such as bacteria with
and without flagellum. We will show that, in this case,
competition is biased towards the fastest species. This is
equivalent to an effective selective advantage that depends
both on noise and spatial fluctuations, and is proportional to
both the noise amplitude and the difference in diffusivity.
We consider a model in which particles belonging to

two different species A and B diffuse in space, reproduce
according to the reactions A → 2A and B → 2B, and
die in a density-dependent fashion (Aþ A=B → A and
Bþ A=B → A) as result of competition. For simplicity, we
assume all reactions occur at the same rate μ ¼ 1. The
system is a hypercube of size Ld in d dimensions with
periodic boundary conditions (see [15,16] for details on the
implementation). We call Dþ δD and D the diffusion
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constants of species A and B respectively. When δD ¼ 0,
the dynamics of the model is characterized by a coarsening
process, as shown in the two-dimensional example of
Fig. (1), left column. We will later argue that this coars-
ening belongs to the universality class of the VM. Instead,
Fig. (1), right column shows that a small difference in the
diffusivity of the two species, δD=D ¼ 5% in this case,
imposes a non-negligible bias on the coarsening dynamics
and, in particular, confers an advantage to the species
having a larger diffusivity. A similar behavior can be
observed also in 1D simulations.
We derived macroscopic equations for the concen-

trations of the two species cAðx; tÞ and cBðx; tÞ [15–18].
The result is

∂tcA ¼ ðDþ δDÞ∇2cA þ μcAð1 − cA − cBÞ þ σAξAðx; tÞ;
∂tcB ¼ D∇2cB þ μcBð1 − cA − cBÞ þ σBξBðx; tÞ; (3)

where σA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μcAð1þ cA þ cBÞ=N
p

and, similarly for σB.
The parameter μ=N is the genetic drift and N can be

interpreted as the density of particles corresponding to a
macroscopic concentration c ¼ 1. ξAðx; tÞ and ξBðx; tÞ are
independent delta-correlated (in space and time) noise
sources, hξiðx; tÞξjðx0; t0Þi ¼ δijδðx − x0Þδðt − t0Þ. An
equation for the relative concentration of one species f ≡
cA=ðcA þ cBÞ can be obtained from Eqs. (3) by means of
Ito’s formula [15,18]. Performing the calculation and
neglecting fluctuations of the total particle density by
imposing cA þ cB ¼ 1 at the end of the procedure yields

∂tfðx; tÞ ¼ D∇2f þ δDð1 − fÞ∇2f þ σξðx; tÞ; (4)

where σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μfð1 − fÞ=Np

. Equation (4) constitutes the
starting point of our analysis. We remark that, while we
neglected fluctuations of the total density cA þ cB, the fact
that the total density is not strictly conserved is crucial
to derive Eq. (4). This corresponds to the fact that it is
impossible to have two species with different diffusion
constants in a lattice model: if each site is strictly occupied
by one spin, then the effective diffusivity of the two species
is equal by constraint. Setting δD ¼ 0 in (4) one retrieves
Eq. (1) describing the VM universality class [12,15,19].
Although (4) has been derived thinking of the continuum
limit of a biological model, we argue that its validity is
more general, as the term proportional to δD is the simplest,
nontrivial way to account for a difference in diffusivity
between the two species. In the following, we will study
how this term affects the dynamics by breaking the VM
universality class.
We start by focusing on the 1D case and study the time

evolution of the integrated mean concentration FðtÞ ¼ hfi,
where h..i denotes an average over space and noise. From
Eq. (4) we obtain

dF
dt

¼ δDhð∇fÞ2i > 0: (5)

The above equation already shows that FðtÞ is a growing
function of time for any δD > 0. The behavior of FðtÞ is
presented in Fig. 2 in 1D simulations of the particle model,
starting with uniformly distributed populations but a more
abundant slow species, so that Fð0Þ ¼ 0.1. Notice how
FðtÞ decreases at increasing N and increasingD at constant
δD=D. A straightforward calculation [16] shows that

dFðtÞ
dt

¼ δD
2

∇2Hðx; tÞjx¼0; (6)

where we introduced the two point connected correlation
function (heterozygosity in biological language) Hðx¼
x1 − x2; tÞ ¼ hfðx1Þ½1− fðx2Þ� þ fðx2Þ½1− fðx1Þ�i, which
is function of x1 − x2, only due to translational invariance.
For δD ¼ 0 the function Hðx; tÞ is explicitly known [19].
For δD=D ≪ 1, we can use this result to evaluate the right-
hand side of Eq. (6) at first order in perturbation theory,
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FIG. 1 (color online). Snapshots of 2D configurations of the
particle model at different times. In all panels, parameters are
N ¼ 104 and D ¼ 10−4. Details of the particle simulations are
in [16]. (Left column) The two species have the same diffusivity.
(Right column) The red species has diffusivity Dþ δD with
δD=D ¼ 0.05. To help the viewer, configurations have been down
sampled (one every four particles, chosen at random, is shown).
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i.e., by replacing the average h…i with the average h…i0
over the solvable case of δD ¼ 0 [16]. The result is

dFðtÞ
dt

¼ δD
4D

ffiffiffiffiffiffiffiffiffi

πεtf
p Hð0ÞGðt=tfÞ; (7)

whereGðxÞ ¼ expðxÞerfcð ffiffiffi

x
p Þ, tf ¼ 2DN2 and the param-

eter ϵ is an ultraviolet cutoff that can be assumed to be of
order 1. Using expression (7), we can cast the growth of
δFðtÞ ¼ FðtÞ − Fð0Þ into the scaling form

δFðtÞ ¼ Hð0Þ ffiffiffiffi

tf
p δD

D
ϕðt=tfÞ; (8)

where the scaling function ϕ does not depend on param-
eters and is ϕðxÞ ∼ x for small x. A collapse of curves for
different values of N and D according to (8), presented in
the inset of Fig. (2), supports our theory within statistical
fluctuations. Notice that, at this order in perturbation
theory, the presence of absorbing states is not predicted
by Eq. (7). This means that the perturbative approach is
expected to describe properly the dynamics only on times
shorter than the global fixation time, i.e.,L2=D.
It is of interest to compare a difference in diffusivity to a

selective advantage caused by a difference s in reproduc-
tion rates, i.e., in the case of Eq. (2). Assuming s ≪ 1 and
averaging directly such term, one obtains that FðtÞ evolves
in this case according to dF=dt ¼ sHð0ÞGðt=tfÞ=2.
Comparing the latter expression with Eq. (7), it is natural
to define an effective advantage given by

seff ¼
δD

2D
ffiffiffiffiffiffiffiffiffi

ϵπtf
p : (9)

To tackle the problem in higher dimensions, let us start
from the general evolution equation for the two point
connected correlation function as obtained from Eq. (4) for
δD ¼ 0:

∂tHðx; tÞ ¼ 2D∇2H −
2μ

N
Hð0; tÞδðxÞ: (10)

Because of the spatial regularization [10], the delta function
resulting from Ito calculus must be interpreted as
δðxÞ ∼ 1=ad, where a ∼

ffiffiffiffiffiffiffiffiffi

2Dϵ
p

is the lattice spacing of
the discrete stepping stone model. In an adiabatic approxi-
mation of Eq. (10), ∇2Hjx¼0 can be estimated as

∇2Hjx¼0 ∼
μHð0; tÞ

DNðDϵÞd=2 ; (11)

which is consistent with the scaling of Eq. (8) for
d ¼ 1. Evaluating Eq. (11) in d ¼ 2 yields ∇2Hjx¼0∼
μHð0; tÞ=ðND2ϵÞ: i.e., the effective advantage becomes
larger by a factor 1=

ffiffiffiffiffiffi

Dϵ
p

with respect to the one-
dimensional case.
The interpretation of Eqs. (9) and (11) is that, after

averaging over noise and space, the effect of a different
diffusivity is analogous to that of a selective advantage. We
now discuss the consequences for the peculiar coarsening
properties of the VM. In two dimensions, the dynamics of
the VM is characterized by a slow coarsening process
where the density of interface decays as log−1ðtÞ (see, e.g.,
[1]). In the continuum off-lattice case, the analogous of the
density of interface is the local heterozigosity Hðx ¼ 0; tÞ.
Figure 3 shows how Hðx ¼ 0; tÞ displays the expected
logarithmic decay in our particle model. When either a
selective advantage or a diffusivity difference is present,
this behavior is observed up to a time t̄ (either proportional
to the selective advantage s or the diffusivity difference δD)
after which Hð0; tÞ decays exponentially. This shows how
both terms have a similar effect in driving the dynamics
away from the VM critical point.
The effective selective advantage introduced in Eq. (9)

can be used to study the probability of fixation Pfix, defined
as the probability of reaching the absorbing state f ¼ 1
of Eq. (4). The fixation probability in terms of a selective
advantage is given by the formula [10,15]

PfixðsÞ ¼
1 − exp

1 − expð−2sNÞ : (12)

Assuming the same formula to hold in the case of different
diffusivities with seff replacing s leads to an interesting
prediction: Pfix should not depend on N as seff ∝ N−1. In
Fig. 4(a) we show Pfix as a function of δD=D for different
values of N, confirming this prediction. The black line is
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FIG. 2 (color online). Behavior of the average concentration of
the fast species FðtÞ at varying the number density N and the
diffusion constant of the slowest species D in one dimension.
In all simulations, the relative difference of diffusion constants is
δD=D ¼ 0.1, the initial fraction of the fast species is Fð0Þ ¼ 0.1,
and the system size is L ¼ 10. Curves are averaged over 103

realizations. The inset shows a data collapse according to Eq. (8).
Linear scaling (black dashed line) is shown for comparison.
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the expression for Pfix, namely, obtained from ϵ ≈ 0.5μ−1.
This also confirms our initial assumption of ϵμ ∼ 1. Notice
how the bias in the fixation probabilities shown in Fig. 4 is
much stronger in two dimensions than in one dimension at
equal parameter values, as predicted by Eq. (11)
We now briefly discuss the same problem in the presence

of advection. Simulations in two dimensions shown in
Fig. 4(b) show similar fixation probabilities with and
without advection by an incompressible flow (details in
[16]). In [16] we argue that in an incompressible flow
Eq. (5) formally holds, leading to the same effective
advantage for the species with larger diffusivity, as far
as the typical scale of the turbulent scale is not too small.
To conclude, we have shown that a small difference in

diffusivity can induce a breaking of the VM universality
class with the critical parameter proportional to the noise
amplitude. In the framework of population dynamics, this
means that a difference in diffusivity between two species
can bias the outcome of competition towards the more agile
one. Notice that, while in the presence of a range expansion
there exists an advantage for the fastest species which can
be estimated by looking at the difference between the
deterministic Fisher velocities [5,20], the effect presented
here is genuinely stochastic and constitutes a new
example of a noise-induced advantage in population
genetics [14,21].
When considering a realistic biological scenario, the

effective advantage given by a higher motility must be
compared with its involved metabolic cost. In this respect,
our result is reminiscent of a classic analysis of seed
dispersal by Hamilton and May [22,23], which predicts
an equilibrium, optimal level of dispersal even in a

homogeneous environment. Further, our preliminary
results in the presence of fluid flows suggest that the same
effect can be crucial also in turbulent marine environments.
We expect our result to be also relevant in other fields
where diffusion is known to affect crucially the dynamics,
such as chemical kinetics [24], game theory [25], and synch-
ronization [26]. Indeed, a term proportional to ð1 − fÞ∇2f
would generally appear in the continuous description of
systems characterized by two spatial concentrations diffus-
ing at different speed, the proper dynamical evolution being
described by Eq. (4).
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