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We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with
one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which
invalidate Nagaoka’s theorem. We find that these kinetically frustrated models have antiferromagnetic
ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism
of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in
the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial
spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the
frustrating loops.
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Itinerant magnetism has proven to be an elusive subject
in condensed matter physics, since itinerant and localized
aspects of electrons need to be taken into account on an
equal footing. The single-band Hubbard model, originally
proposed to describe metallic ferromagnetism [1], has also
been associated with the antiferromagnetism of kinetic
exchange origin close to half filling. While virtual kinetic
processes favor antiferromagnetism, it is a rule of thumb
to link real kinetic processes with ferromagnetism [2].
However, there exist only few exact results that ensure
the existence of itinerant ferromagnetism [3,4]. Among
these, the most renowned is Nagaoka’s theorem [3], which
asserts that the saturated ferromagnetic state is the unique
ground state when one hole is doped on the half-filled
Hubbard model with infinite U Coulomb repulsion.
Furthermore, a connectivity condition must be fulfilled
for the validity of Nagaoka’s theorem: The sign of the
hopping amplitudes around the smallest closed loop of
the lattice must be positive, otherwise the hole kinetic
energy will be frustrated and the saturated ferromagnetic
state will no longer be the ground state. Kinetic energy
frustration is a quantum mechanical phenomenon without
a classical analog, easily understood in certain tight-
binding models where an electron cannot gain the full
kinetic energy −zjtj because of quantum interferences
[5,6]. This kind of frustration has been considerably less
studied than the magnetic one, although recent works
indicate that its effects may lead to rich physics, such as
robust superconductivity in a strongly repulsive fermionic
system [7] and spontaneous time-reversal symmetry break-
ings [8], among others [9,10].
In a seminal work, Haerter and Shastry [11] have found

a 120° antiferromagnetic Néel order as the ground state of
the U ¼ ∞ triangular lattice Hubbard model when the hole
motion is frustrated (t > 0), thus uncovering a new mecha-
nism for itinerant magnetism. In this Letter, we further

characterize this kinetic antiferromagnetism; we describe
its microscopic origin, analyzing generic kinetically frus-
trated electronic models for which, in the limit of infinite
Coulomb repulsion and one hole doped away from half
filling, Nagaoka’s theorem is not valid. In particular, we
study the ground state of two Hubbard models: one on the
triangular lattice with a positive hopping term, and the
other on the square lattice with a positive second-neighbor
hopping term. Using the density matrix renormalization
group (DMRG) [12,13], we find in both cases that the
ground state has an antiferromagnetic order: a 120° Néel
order for the triangular lattice and the usual (π, π) Néel order
for the square lattice. Surprisingly, we find that the local
staggered magnetization becomes classical (saturated) in
the thermodynamic limit. This result can be thought as the
almost-perfect antiferromagnetic counterpart of the Nagaoka
ferromagnetism; the difference is that, as the local staggered
magnetization does not commute with the SUð2Þ invariant
Hubbard Hamiltonian, classical antiferromagnetic states
cannot be the exact eigenvectors for finite lattices. Based
on a simple slave-fermion mean field [14], we propose a
mechanism responsible for the kinetic antiferromagnetism:
If the hole were moving on a ferromagnetic background
on these lattices, its kinetic energy would be frustrated.
However, when moving on a certain antiferromagnetic
background, the hole can release its kinetic energy frus-
tration by (depending on the system) acquiring a nontrivial
spin Berry phase or having zero hopping amplitude along
frustrating loops. As the Coulomb repulsion is infinite, no
exchange interaction exists, thus the stabilization of the
antiferromagnetism is purely of kinetic origin.
Hubbard model and DMRG.—We study the Hubbard

model, H¼−
P

hijiσtijðĉ†iσ ĉjσþH:c:ÞþU
P

in̂i↑n̂i↓, where
we use the usual notation, and hiji denotes pairs of
neighbor sites connected by the hopping parameters tij.
From the outset, we take U ¼ ∞. We study the Hubbard
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model on two lattices with frustrated kinetic hole energy:
the triangular lattice with positive t and the square lattice
with nearest t1 and positive next-nearest neighbor t2
hopping terms. In the latter case, we choose t2 ¼ t1 > 0
as a generic point with kinetic frustration. We take
t ¼ t1 ¼ 1 as the energy unit.
To solve the Hubbard model we apply DMRG on ladders

of dimension Lx × Ly (see Fig. 1 in [15]), with up to
Ly ¼ 6 legs and Lx ¼ 15 rungs. We choose clusters that are
compatible with the antiferromagnetic orders found in this
Letter. This means that we take an even number of legs,
Ly, for both lattices, and an even (multiple of 3) Lx for the
square (triangular) lattice. We consider cylindrical boundary
conditions with periodic wrapping in the rung direction and
open boundary conditions along the legs. Comparing results
obtained with clusters of different numbers of legs, we find
that the clusters withLy ¼ 6 give a correct description of the
two-dimensional systems. A similar conclusion has been
reached previously on square ladders [16]. We have kept the
truncation error less than Oð10−7Þ, ensuring that errors of
the DMRG are smaller than symbol sizes in each figure.
We have also considered the inclusion of a weak pinning

magnetic field (B ¼ 0.1t) acting on only a single site, at the
lower left-hand end of the clusters [16] or on one magnetic
sublattice. In previous works [12], the purpose of the small
magnetic field has been to pin a possible magnetic order for
the purpose of reducing the computational efforts, by com-
puting the average value of the local spin instead of correlation
functions, thereby optimizing the truncation error. In our
Letter, the inclusion of the weak magnetic field will allow us
to highlight the classical character of the ground states.
Static magnetic structure factor.—To detect the exist-

ence of magnetic order, we compute the static magnetic
structure factor with DMRG for both lattices, SzzðkÞ ¼
ð1=NÞPijhSzi · Szjie−ikðri−rjÞ, where N ¼ LxLy is the num-
ber of sites in the cluster, and i, j run over all sites. In the
inset of Fig. 1(a) we show an intensity plot of SzzðkÞ for
a triangular cluster with Ly ¼ 6 legs and N ¼ 90 sites.
For positive t, SzzðkÞ exhibits two sharp maxima at the
momenta Q ¼ ð4π=3; 0Þ and Q� ¼ ð2π=3; 2π= ffiffiffi

3
p Þ, corre-

sponding to a three-sublattice 120° Néel order. As these
peaks diverge with increasing cluster size, the ground state
exhibits a long-range magnetic order of 120° . Haerter and
Shastry [11] previously obtained this result by diagonal-
izing the corresponding effective spin Hamiltonian on
smaller clusters (up to 27 sites). Note that because we
are working in the extremely correlated limit, where the
exchange interaction driven by virtual kinetic processes
vanishes, J ¼ 0, the magnetic order can only have its origin
in the hole motion. On the other hand, as the triangular
Heisenberg model has the same 120° Néel order in its
ground state [17,18], for finite U (J > 0) and low doping,
there is a synergy between real and virtual kinetic
processes which leads to the strengthening of the 120°
Néel order with respect to the half-filled case [19,20].

For negative t (not shown in the figure), the magnetic
structure factor has a sharp peak at k ¼ 0, while it vanishes
for all other momenta. This result corresponds to a fully
polarized ferromagnetic ground state, as predicted by
Nagaoka’s theorem.
In the inset of Fig. 1(b) we show the magnetic structure

factor for the U ¼ ∞ Hubbard model on square clusters
with Ly ¼ 6 legs and N ¼ 84 sites, for t2 ¼ t1 > 0. Here,
there is a marked peak for the magnetic wave vector
Q ¼ ðπ; πÞ, corresponding to the usual two-sublattice
Néel order. If we relax the infinite U condition, the kinetic
exchange interactions would favor a collinear antiferro-
magnetic order, characterized by the magnetic wave vector
ðπ; 0Þ or ð0; πÞ; there would be a competition between real
and virtual kinetic processes, resulting in magnetic incom-
mensuration and phase separation [20]. For t2 < 0, the
ground state is the saturated ferromagnet, in agreement with
Nagaoka’s theorem.
Local magnetization.—After the magnetic structure factor

has been computed, we can obtain the order parameter for
the antiferromagnetic order, the local staggered magnetiza-
tion Ms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPαhð

P
i∈αSiÞ2i

p
[21], where α denotes

the magnetic sublattices. The cluster-size dependence of Ms
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FIG. 1 (color online). Local magnetization versus 1=
ffiffiffiffi
N

p
for (a)

U ¼ ∞ triangular Hubbard (triangles) and Heisenberg (circles)
models, without a magnetic field (open symbols) and with a
magnetic field B ¼ 0.1t applied to one sublattice (solid symbols);
(b) U ¼ ∞ square Hubbard model with first- and second-
neighbor hopping terms (t1 ¼ t2 ¼ 1), without a magnetic field
(open squares) and with a magnetic field B ¼ 0.1t1 applied to one
sublattice (solid squares). Dashed lines represent classical local
magnetization. Insets: Intensity plot SzzðkÞ for the (a) triangular
and (b) square models. Darker color indicates a larger magnetic
structure factor.QAF ¼ ð4π=3; 0Þ and (π, π) for the triangular and
square lattice, respectively.
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for the U ¼ ∞ triangular Hubbard model is shown in
Fig. 1(a) (open triangles), along with the local magnetization
of the triangular Heisenberg model (open circles) for
comparison. The dashed line indicates the classical local
magnetization, Ms;classic ¼ 1

2
− ð1=2NÞ, corrected by the

presence of the hole uniformly distributed (as is confirmed
by the DMRG calculations). Surprisingly, Ms is very close
to the classical value, even for small clusters, and it reaches
this value in the thermodynamic limit (Ly ¼ 6, Lx → ∞).
On the other hand, in the Heisenberg case, strong zero-point
quantum fluctuations lead to a drastic reduction of Ms [18],
and due to the quasi-one-dimensional character of the
clusters, Ms extrapolates to 0 [12,15]. One possible reason
for the classical character of the magnetic order is that the
effective spin model, obtained after integrating the hole
degree of freedom, contains effective long-range interactions
(see Eq. 3 in Ref. [11]) that may favor the classical ordering,
like in the Lieb-Mattis model [22].
As we can see in Fig. 1(a), Ms for finite-size clusters

does not take exactly the classical value. The Hubbard
Hamiltonian is SUð2Þ spin-rotational invariant and does not
commute with the antiferromagnetic order parameter;
consequently, its ground state cannot break this symmetry
for finite systems. Instead, it is expected that the finite-size
ground state is a singlet, and only in the thermodynamic
limit can there be a spontaneous SUð2Þ symmetry breaking
driven by the collapse of many low-lying states onto the
ground state [17]. The existence of a tower of states for the
U ¼ ∞ triangular Hubbard model has been confirmed in
Ref. [11]. We argue that the small departure of the order
parameter from the classical value is related to the singlet
character of the finite-size ground state, and not to zero-
point quantum fluctuations that reduce the order parameter,
as in quantum antiferromagnets. Pictorially, the finite-size
ground state can be thought of as a linear combination of
several classical antiferromagnetic states lying in different
planes. To strengthen this picture, we apply a small uniform
pinning magnetic field, B ¼ 0.1t, in one sublattice only.
(If we apply the magnetic field in only one site, the
difference is quantitatively small, of only a few percent.)
Figure 1(a) shows Ms for the Hubbard model with the
magnetic field applied (solid triangles) and the same for the
triangular Heisenberg model (solid circles). It can be seen
that in the Hubbard model Ms becomes classical, because
the magnetic field selects one of the classical orders that
compose the finite-size ground state. On the other hand,
the magnetic field increases Ms of the Heisenberg model,
but strong zero-point quantum fluctuations remain.
Figure 1(b) shows Ms for the Hubbard model on the

square lattice, with (solid squares) and without (open
squares) an applied uniform magnetic field in one sub-
lattice. The same behavior as the triangular case is found:
The local magnetization is close to the classical values
when B ¼ 0; it is enough the application of a small
B ¼ 0.1t to pin one classical magnetic ground state.

Energy scale.—For the triangular lattice, the extrapolated
ground state energy is −4.178� 0.001, in agreement with
the value obtained in [11] (−4.183� 0.005), while for
the square lattice the extrapolated value is −4.848� 0.001.
In order to quantify the energy scale of the kinetic
antiferromagnetism, we match the effect of the hole
motion to an effective nearest-neighbor antiferromagnetic
Heisenberg interaction, Jeff [11,23], resulting in Jeff≃
Δe≡ ðEF − EAFÞ=N; this is the energy difference per site
between the fully polarized ferromagnetic state and the
antiferromagnetic ground states. We have found that
Jeff ≃ 1.15=N (Jeff ≃ 0.7=N) for the triangular (square)
lattice, for large N.
Release of the kinetic frustration.—Now we trace back

the origin of the kinetic antiferromagnetism by means of
a comprehensive mean-field approximation. To this end,
we use the slave fermion–Schwinger boson representation
of the projected electronic degree of freedom in the t − J
model, the strong-coupling limit of the Hubbard model.
Here, we give a brief description of the mean-field
approach (see Supplemental Material [24] for the details).
In this representation, the projected electronic operator
is written as ~ciσ ¼ b†iσfi, a composition of a Schwinger
boson biσ, which accounts for the spin degrees of freedom,
and a spinless slave fermion fi, which describes the
charge sector. This representation is replaced in the
t − J Hamiltonian, resulting inHt−J ¼ −

P
hiji2tijðF̂ijB̂

†
ijþ

H:c:Þ þHbos, where we have defined the SUð2Þ invariant
operator B̂†

ij ¼ 1
2

P
σb

†
iσbjσ related to ferromagnetic corre-

lations between sites i and j [25], while F̂ij ¼ f†i fj
describes the hole-hopping amplitude. Hbos is a bosonic term
that represents the spin fluctuations due to the Heisenberg
term, and it vanishes when J → 0 [14]. After a mean-field
decoupling, we get HMF

t−J ¼
P

kεfkf
†
kfk þHMF

bos , where the
hole kinetic energy dispersion takes the form εfk ¼
2
P

RtRBR cosk ·R (R are the relative position vectors of
the sites connected by tR). In the one-hole case, the ground-
state energy of the system corresponds to the bottom of εfk.
This energy dispersion is tight-binding-like, with the hopping
terms tR renormalized by the ferromagnetic mean-field
parameter BR∶ tR → teffR ¼ tRBR. The presence of the B
parameters has two consequences: On one hand, the hopping
terms are renormalized as in the double-exchange mechanism
[26], teffR ∼ tR cosðφR=2Þ, where φR is the angle between the
spins separated by vector R; if the spins are antiparallel, teffR
vanishes. On the other hand, the renormalization can give rise
to a nontrivial spin Berry phase for noncollinear orders,
encoded in the BR signs and associated with the solid angle
subtended by the spins on a closed loop [24].
When the system is kinetically frustrated, these two

features of the hopping renormalizations act, releasing the
hole kinetic energy frustration as the hole moves through
certain antiferromagnetic patterns. Now we describe how
this release works in the triangular and square lattice cases.
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In the triangular lattice, for the ferromagnetic state, all B
parameters are equal to S ¼ 1=2; consequently, the hole
motion is frustrated for t > 0. On the other hand, in a 120°
Néel order, the parameters Bð�1;0Þ become negative, while
the others remain positive because BR ∼Ms cosðQR=2Þ
[25]. These negative B’s turn the hole dispersion upside
down, releasing the kinetic frustration of the hole motion.
Notice that the flux of the B parameters in a closed loop
is the solid angle subtended by the magnetic order, and
consequently it is associated with the spin Berry phase
detected by the hole (see Supplemental Material [24] for
details). In the square lattice case, when t2 > 0, the hole
motion in a ferromagnetic state is frustrated. However, in
the (π, π) Néel order, the vanishing of the effective first-
neighbor hopping terms (due to their antiparallel spins [26])
removes the frustrating loops, thus releasing the kinetic
frustration.
We remark that, at the mean-field level, the 120° Néel

[(π, π) Néel] state is degenerate with the ferromagnetic one
in the triangular case with t > 0 (square lattice with t2 > 0).
The reason for this degeneracy is that, although the hole
motion through the antiferromagnetic states is not frus-
trated, there is a hole dispersion bandwidth reduction due
to the hopping renormalizations [24]. So, strictly speaking,
the mean-field numerics do not show the stabilization of
the kinetic antiferromagnetism over the Nagaoka state.
However, after considering the combined effects of quan-
tum interference and strong-correlation physics beyond the
mean-field approximation (as in our DMRG predictions),
the actual kinetic antiferromagnetism emerges. Despite the
mean-field discrepancy, we strongly emphasize that the
mean field approach allows us to find one of the main
ingredients of the kinetic antiferromagnetism; that is,
the release of the kinetic frustration.
Using the insight we gained from the mean-field approach,

we can predict the appearance of this novel kinetic anti-
ferromagnetism phenomenon in other kinetically frustrated
systems, like the anisotropic triangular lattice and the t1 − t2
square lattice with t2 ≠ jt1j. Preliminary DMRG results show
the ubiquity of kinetic antiferromagnetism in these systems
(see Supplemental Material [24]). Furthermore, we remark
that the kinetic antiferromagnetism mechanism is completely
different from the exchange one; in general, the ground state
selected by this itinerant mechanism does not necessarily
have to be the classical ground state of the related Heisenberg
model. In this context, in particular, the U ¼ ∞ kagome
Hubbard model, with one hole doped and t > 0, may be
a promising candidate for the search of unconventional
kinetic antiferromagnetism physics [24].
Finally, if we lift the condition of infiniteU, it is possible

to study the synergy between real and virtual kinetic
processes in order to highlight the crossover from the
Heisenberg regime, governed by the exchange interactions,
to the kinetic antiferromagnetic one, governed by the
kinetic energy. In Fig. 2 we show the local magnetization

of the ground-state 120° Néel order of the triangular t − J
model predicted by the mean-field approach and DMRG
[27], as a function of J=t for doping δ ¼ 0.0185. There is
fairly good qualitative agreement between both methods;
for larger values of J=t the order parameter is close to
the Heisenberg value calculated within each approach,
MMF

s;Heis ∼ 0.275 [28] and MDMRG
s;Heis ∼ 0.205 [12], while Ms

increases with decreasing J=t until it reaches the classical
value for J=t → 0 in both methods.
Conclusions.—Using the density matrix renormalization

group, we find that classical antiferromagnetic ground states
can be realized in extremely correlated electronic systems
with frustrated kinetic energy. In particular, we study the
U ¼ ∞Hubbard model, with one hole doped away from half
filling, on the positive t triangular lattice, and on the square
lattice with positive second-neighbor hoppings. We also
propose a mechanism responsible for this kinetic antiferro-
magnetism, that is, the release of the kinetic energy frus-
tration driven by (depending on the system) the spin Berry
phase acquired by the hole while moving around an anti-
ferromagnetic background, or the vanishing of the effective
hopping amplitude along the frustrating loops. This new
mechanism for itinerant antiferromagnetism is quite ubiqui-
tous for one hole doped away from half filling in kinetically
frustrated lattices [24]; it is also relevant in more general
situations, like the finite U regime and low-doping cases,
as the mean-field results seem to indicate [20]. It is worth
noticing that recent experiments [29] were able to generate
gauge fields that induced frustrated motion of ultracold
bosons in triangular optical lattices, opening up the possibil-
ity to observe related kinetic antiferromagnetism phenomena.
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CONICET Grants No. 0160 and No. 0392.
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