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Circulating orbital currents produced by the spin-orbit interaction for a single electron spin in a quantum
dot are explicitly evaluated at zero magnetic field, along with their effect on the total magnetic moment
(spin and orbital) of the electron spin. The currents are dominated by coherent superpositions of the
conduction and valence envelope functions of the electronic state, are smoothly varying within the quantum
dot, and are peaked roughly halfway between the dot center and edge. Thus the spatial structure of the spin
contribution to the magnetic moment (which is peaked at the dot center) differs greatly from the spatial
structure of the orbital contribution. Even when the spin and orbital magnetic moments cancel (for g ¼ 0)
the spin can interact strongly with local magnetic fields, e.g., from other spins, which has implications for
spin lifetimes and spin manipulation.
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Spin-correlated orbital currents dramatically modify the
magnetic moment μ of an electron spin in many semi-
conductors, often enhancing μ by an order of magnitude over
its free-electron value[1,2]. This modified magnetic moment
also controls the spin dynamics in nanostructures, and is
usually parametrized in the literature as a shape, size and
composition dependent g tensor defined by μ ¼ g · S, where
S represents the electron spin [3–16]. Despite the central
nature of g tensors to high-speed spin manipulation
[12–15,17,18], spin lifetimes [19,20], and quantum compu-
tation [21], the spatial structure of the spin-correlated orbital
currents that determine these g tensors has not been inves-
tigated. The resulting spatial structure of the magnetic
moment μðrÞ, which has been neglected up to now, would
significantly affect the interaction of confined electron
spins with magnetic fields that vary rapidly in space, such as
from nearby spins. The most natural assumption, that
μðrÞ ¼ μeff jΨðrÞj2, where ΨðrÞ is the wave function of
the ground-state electron, is incorrect. Recently the nature of
spin-correlated orbital currents has been investigated in
magnetic metals and insulators in a spatial formulation that
identifies itinerant circulating currents at the edges of
materials [22,23], by constructing the orbital contribution
to the magnetic moment originating from each unit cell in the
material. The itinerant circulating currents of Refs. [22,23],
however, are relatively small by comparison with the large
itinerant currents that can arise for carriers in semiconductors
and semimetals, as was first shown in the diamagnetic
response of bismuth [2,24,25]. Spin-correlated orbital cur-
rents also play a key role in the fundamental understanding
and phenomenology of the quantum spin Hall effect [26,27].
Here we calculate the spatial distribution of spin-

correlated orbital currents for the lowest-energy electron
spin states of a quantum dot at zero magnetic field, and show
that itinerant currents are extended throughout the quantum

dot, peaking about midway out from the center of the dot.
We assume that a single electron resides in the quantum dot
with an oriented spin, e.g., through spin injection or optical
excitation, and that no magnetic field is applied; the resulting
circulating currents thus are not due to an orbital response to
an applied magnetic field. For spherical dots with hard-wall
boundary conditions the electronic states are obtained within
an analytically solvable envelope-function formalism; results
for nanowire quantum dots and quantum-well quantum
dots are also presented. In each case the magnetic moment
is primarily due to itinerant currents originating from
coherent superpositions of conduction and valence envelope
functions, rather than from magnetic moments associated
with the Wannier functions of each unit cell (in contrast to
Refs. [22,23]). In this we find a spin-orbit analogue to known
features of the spinless orbital angular momentum in a
magnetic field, which was shown long ago to be due almost
entirely to itinerant currents [2,24,25]. In the limit of large
dot size, approaching the bulk limit, the effective range
of the orbital currents is set by the de Broglie wavelength.
The resulting correct form of μðrÞ differs greatly from
μeff jΨðrÞj2. For example, the spin of a quantum dot with
g ¼ 0 will still evince a local magnetic moment that could
interact with localized magnetic systems such as ferromag-
nets [28] or nuclear moments through the hyperfine inter-
action, as well as a quadrupolar magnetic moment that could
couple to nearby spins. Orbital angular momentum quench-
ing [29] in quantum dots [10] thus consists of reducing the
amplitude of the orbital magnetic moment generated by this
itinerant current.
The total magnetic moment μ is the sum of the spin

magnetic moment μspin and the orbital magnetic moment
μorb. The orbital magnetic moment μorb of a stationary state
ΨðrÞ occupying a volume V is related to the orbital current
density jðrÞ [30], by
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μorb ¼
1

2

Z
V
r × jðrÞdr ¼ 1

2

X
s

Z
Vs

r × jðrÞdr; (1)

where we have considered the moment as a summation of
moments arising from currents jðrÞ flowing in each of s unit
cells having volume Vs. For the ground state of an electron
in a quantum dot, with maximal spin along an axis, the total
spatially integrated current must vanish (i.e., a current loop).
To find the scale of these current loops we decompose the
orbital current into an itinerant current that flows into or out
of a unit cell, hjis, and a localized current whose average
over the unit cell vanishes, jðrÞ − hjis; the distinction
between these is shown graphically in Fig. 1. In semi-
conductor quantum dots the orbital magnetic moment from
the itinerant current dominates the total orbital magnetic
moment, and varies slowly on the scale of unit cells.
The orbital magnetic moment can then be expressed

[22] as

μorb ¼
1

2

X
s

½Vsrs × hjis þ
Z
Vs

ðr − rsÞ × fjðrÞ − hjisgdr�;

where rs is the vector pointing to unit cell s. The first term
is the orbital moment due to itinerant currents, whereas the
second term is the sum of orbital moments due to a
(circulating) current localized within each unit cell. For
an isolated atom the first term is zero.
Within the envelope function approximation, which is

appropriate for quantum dots much larger than a unit cell of
the constituent material, the wave function ΨðrÞ is the
product of a Bloch state uiðrÞ of band i, and a spatially
slowly varying envelope function FiðrÞ (approximately
constant in a unit cell),

ΨðrÞ ¼
X
i

FiðrÞuiðrÞ; (2)

and jðrÞ ¼ ðeℏ=m0ÞImfΨ�ðrÞ∇ΨðrÞg [31] becomes

jðrÞ ¼ eℏ
m0

X
i;j

Imfu�i ðrÞujðrÞF�
i ðrÞ∇FjðrÞ

þ F�
i ðrÞFjðrÞu�i ðrÞ∇ujðrÞg: (3)

The first term contains the velocity generated by the
envelope wave function, whereas for the second term the
velocity comes from the Bloch functions. Contributions to
the moment come either from the Bloch velocity term (BV)
or envelope velocity term (EV) of Eq. (3), and originate
either from the cell-averaged current hjis (IC) or the current
within the unit cell (LC). For concreteness we consider the
orbital moment for an electron in a nanostructure whose
Bloch functions uiðrÞ are eigenstates of parity. Defining
μorb ¼ μEV þ μBV and μBV ¼ μBV;IC þ μBV;LC, and simpli-
fying using the symmetries of the Bloch functions, we find
the orbital magnetic moment densities

μBV;ICðrsÞ ¼
eℏ
2m0

X
i;j

ImfF�
i ðrsÞFjðrsÞðrs × huij∇jujiÞg;

μBV;LCðrsÞ ¼
eℏ
2m0

X
i;j

ImfF�
i ðrsÞFjðrsÞhuijLBjujig;

μEVðrsÞ ¼
eℏ
2m0

X
i≠j

Imfhuijrjuji × F�
i ðrsÞ∇FjðrsÞg

þ eℏ
2m0

X
i

F�
i ðrsÞLEFiðrsÞ;

where LB and LE are the angular momentum operators
acting on the Bloch and envelope functions, respectively.
Studies of optical matrix elements, whose values also
depend on the current appearing in Eq. (3), have established
that matrix elements of the Bloch velocity exceed those of
the envelope velocity by approximately the ratio of the
nanostructure linear size to the unit cell size [32]. This ratio
is ≳15 for realistic parameters, and thus, as will be evident
below, μEV ≪ μBV for the range of validity of the envelope
function approximation. Furthermore, as huijLBjuji—the
angular momentum of the Bloch function—does not
exceed 1, the dominant contribution to the orbital magnetic
moment must be from μBV;IC ≫ μBV;LC.
We now consider the origin of the orbital moment for an

electron in the lowest conduction state of a quantum dot.
The minimal set of Bloch states are two conduction s states
and six valence p states (an eight-band k · p model for the
semiconductor, as in Ref. [33]). To avoid complications
from other spin-dependent effects we neglect the zero-
field spin splittings of conduction-band states, and
other inversion-asymmetric effects, in III–V semiconduc-
tors. For i labeling the conduction band FiðrÞ is s-like,
whereas for j labeling a valence state FjðrÞ is p-like. The
spatial distribution of jðrÞ, dominated by the product
F�
i ðrÞFjðrÞ, will therefore peak between the center and

edge of the nanostructure. This spatial dependence is
significantly different from that of jΨðrÞj2. For a stationary
state, the divergence of jðrÞ is zero and the current must
flow along a closed surface within the nanostructure.
Therefore, jðrÞ resembles a current loop [see Fig. 2(a)].
If the nanostructure is very large the de Broglie wavelength,
or the Bohr radius of dopants, will set the length scale

FIG. 1 (color). The orbital current within a unit cell can be split
into an itinerant contribution hjis, and a localized contribution
jðrÞ − hjis. Vector rs points to the center of unit cell s.
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associated with the current loop. As the nanostructure gets
smaller, quantum confinement quenches the current loop
and modifies the electron g factor.
The spatial structure of the spin magnetic moment is

completely different from that of the orbital magnetic
moment of the electron spin. In the nonrelativistic
limit of the Dirac equation [31] the spin magnetic moment
μspin is

μspin ¼
eℏ
2m0

Z
V
Ψ�ðrÞσΨðrÞdr

¼ eℏ
2m0

X
s;i;j

F�
i ðrsÞFjðrsÞhuijσjuji; (4)

where σ is the Paul vector. The spatial distribution of μspin is
determined by F�

i ðrsÞFjðrsÞ. If the dominant envelope
function is that of the conduction band, then the largest
contribution to the spin magnetic moment will have spatial
structure jFiðrsÞj2, where FiðrÞ is s-like. Thus no current
loop structure exists for the spin moment.
The dependence on dot radius R of the electron ground

state orbital magnetic moment for a quantum dot provides a
concrete demonstration of these features. Here we sum-
marize the calculation for spherical dots with hard-wall
boundary conditions; those for nanowire quantum dots or
quantum-well quantum dots are described in Supplemental
Material [34]. The Hamiltonian H commutes with the total

angular momentum F ¼ LE þLB þ s ¼ LE þ J (s is the
spin moment and J the total magnetic moment of the Bloch
function), so the Hamiltonian is block diagonal in a basis of
jF;Fzi [33],

H ¼
X
F;Fz

HF;Fz
; (5)

where the electron ground state of the quantum dot is
jF;Fzi ¼ j 1

2
;� 1

2
i. As this is a Kramers doublet, it suffices

to examine j 1
2
;þ 1

2
i to understand the angular-momentum

structure, as j 1
2
;− 1

2
i is simply the time reverse of j 1

2
;þ 1

2
i.

An eight-band k · p model for H is analytically solvable,
and only three spherical basis states jF;Fz; J; LEi contrib-
ute to j 1

2
;þ 1

2
i,

���� 12 ;þ
1

2

�
¼ j 1

2
; 1
2
; 1
2
; 0i þ αj 1

2
; 1
2
; 3
2
; 1i þ βj 1

2
; 1
2
; 1
2
; 1i

ð1þ jαj2 þ jβj2Þ1=2 ;

which follows from the rules for adding angular momenta
and the parity of the effective mass equations [35]. The
problem is now analytically solvable; diagonalizing the
Hamiltonian yields α ¼ αðRÞ and β ¼ βðRÞ. These coef-
ficients represent the degree of intermixing of valence band
states into the electron ground state. They are small and the
ground state is dominated by the conduction band con-
tribution j 1

2
; 1
2
; 1
2
; 0i. See Supplemental Material [34] for

explicit expressions for α and β
The cell-averaged current originating from the Bloch

velocity, hjiBV, is the source of the dominant orbital
moment μBV;IC. From the wave function of the j 1

2
;þ 1

2
i

state, using Eq. (3), we calculate hjiBV to be

hjiBV ¼ −
eP0

2
ffiffiffi
6

p
πℏ

Imfα −
ffiffiffi
2

p
βg

1þ jαj2 þ jβj2 j0ðkrÞj1ðkrÞ sinðθÞeϕ;

where jlðkrÞ is the lth spherical Bessel function, k the
spherical wave number, and P0 the Kane matrix element.
As hjiBV only has an eϕ component it suffices to show the
magnitude of hjiBV in the ey direction in an xz cross
section, as shown in Fig. 2(b). hjiBV is proportional to the
coherent product of the conduction band and valence band
envelope functions, j0ðkrÞj1ðkrÞ. The current density
therefore peaks roughly at R=2 and strongly resembles a
classical current loop circulating in the xy plane. The
coefficients α and β depend on the spin-orbit coupling Δ,
and Imfα −

ffiffiffi
2

p
βg ∝ Δ, demonstrating directly the spin-

correlated nature of hjiBV. As expected from the trans-
formation properties of currents and spins under time
reversal, hjiBV circulates in the opposite direction for the
time-reversed state j 1

2
;− 1

2
i.

The spatial structure of the dominant orbital magnetic
moment μBV;IC mimics the spatial distribution of the current
and is shown in Fig. 2(c). In contrast, the spatial structure of
the spin magnetic moment, shown in Fig. 2(d), mimics the
probability density of the electron’s wave function and
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FIG. 2 (color). (a) An illustration of the contours of constant
probability of the conduction band (blue) and valence band
(green-red) envelope functions. The valence band envelope
function is colored according to its phase. (b) The normalized
magnitude of hjiBV in the ey direction. (c) The normalized
dominant contribution to the orbital magnetic moment μBV;IC.
(d) The normalized spin magnetic moment μspin. (b)–(d) are xz
cross sections, where the boundary of the sphere is represented by
the white or black circle.
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differs completely from the spatial structure of the orbital
moment.
The dependence on R of the circulating orbital currents

and the resulting contributions to the orbital magnetic
moment are plotted in Fig. 3 for an InAs sphere. For large
R the magnetic moment μ approaches the bulk value ∼8μB.
On the other hand, the magnetic moment approaches zero
as R gets smaller. This dependence exhibits the orbital
momentum quenching described in Ref. [10]. For the entire
range of values (R > 3 nm) where the envelope function
approximation is valid, μBV;IC is a factor of five or more
larger than the other contributions to the orbital magnetic
moment, μBV;LC and μEV. The dominant contribution to the
spin moment comes from the conduction band contribution
j 1
2
; 1
2
; 1
2
; 0i, and the calculated spin moment density peaks

at the center of the quantum dot, as shown in Fig. 2(d). The
valence band contributions are negligible, since the inte-
grated spin moment, shown in Fig. 3, is within 1% of one
Bohr magneton. In the limit of R → ∞ our analytic
expression for μ is identical to Roth’s formula [1].
In order to understand the saturating behavior μBV;IC for

large R, and the orbital angular momentum quenching for
small R in more detail, the magnetic moment originating
from a current loop provides insight. The magnetic moment
of a loop carrying a current I is

μloop ¼ πIR2: (6)

Quantum confinement restricts the radius R of the loop and
therefore quenches the magnetic moment. The radius
dependence of the current,

I ¼
Z

hjiBV · ndA ∼
Imfα −

ffiffiffi
2

p
βg

R
; (7)

is plotted for the InAs sphere in Fig. 3. The current is
proportional to the product of the amplitudes of the
conduction and valence envelope function, and reaches a
maximum around R ∼ 1 nm where the confinement energy
is ∼1.5 eV. To better understand the radius dependence
of I we need to analyze in detail the conduction-valence
coupling. The contribution of valence states to the electron
ground state depends on k times the momentum matrix
element, divided by the energy splitting between conduc-
tion and valence states. Within k · p theory, therefore, the
conduction-valence coupling that determines α and β in
Eq. (7) is proportional to k ∼ 1=R. The energy splitting at
large R (small k) is approximately constant (and equal to
the band gap), and therefore I ∝ 1=R2 so μ approaches a
constant. However, at small R the energy difference
depends on the free kinetic energy, and along with addi-
tional cancellations between α and β for small R the
limiting behavior as R → 0 is I ∝ R2 so μ ∝ R4. The
maximum of the current as a function of dot radius
(Fig. 3) is therefore a competition between the band gap
and the free kinetic energy, and peaks when the free kinetic
energy equals roughly the band gap energy. Note that a
similar dependence on free kinetic energy and the band gap
influences the electron energy-dependence of the g factor in
bulk semiconductors and leads to g → 2 for large electron
energies[38–40]. When the limiting functional dependence
of I is inserted directly into the equation for the magnetic
moment of a current loop, one immediately obtains the
limiting functional dependence of the magnetic moment,
justifying the current-loop analogy for interpreting the
origin of the orbital magnetic moment in semiconductor
nanostructures.
We also include in Fig. 3 results for InAs quantum-well-

based quantum dots (height 10 nm and lateral harmonic
confinement length Lhar [36]) and InAs nanowire quantum
dots (radius 40 nm and harmonic confinement height Lhar
[37]), showing that these features are quite general.
Additional information on the calculations for such dots
is available in the Supplemental Material [34]. We note that
strain, such as occurs in Stranski-Krastanov dots, will
modify the band edges of the constituent materials and
hence change α and β, but the qualitative analysis of these
dots will be similar to those presented here.
We expect this approach to be applicable to holes in

quantum dots as well, although the structure of the circulat-
ing currents is much more complex. Whereas the compo-
sition of the electron ground state is predominately the
product of an s-like envelope function and an s-like Bloch
function, the dominant composition of the hole ground state
is the product of an s-like envelope function and a p-like
Bloch function. The greater Bloch function angular momen-
tum leads to complex orbital momentum structure of the
hole state wave functions and sensitive dependences of hole
state ordering on size and strain [41,42].
The direct identification of the circulating currents that

produce the orbital magnetic moment for an electron spin
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FIG. 3 (color). Contributions to the orbital moment μorb, the spin
moment μspin and current I of an InAs sphere with a hard wall
boundary, as a function of the radiusR and the confinement energy.
Also included are InAs quantum-well-based quantum dots (dot-
dashed line) [36] and nanowire quantum dots (dashed line) [37].
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within a quantum dot has immediate implications for the
spin dynamics, intrinsic magnetism, and g tensor structure
of quantum dots. Even when the g ¼ 0 for the electron spin,
the difference between the orbital magnetic moment and
the spin magnetic moment means the electron spin can
couple to localized magnetic fields, such as those origi-
nating from nuclear spins (hyperfine interaction), ionic
moments, or nanoscale ferromagnetic regions [28]. The
lack of a substantial contribution to the circulating current
from the center of the dot suggests that the g tensor for
quantum rings should be very similar to that of quantum
disks, which has been observed experimentally but unex-
plained [43]. The nature of these spatially dependent
currents should also influence other observables that
depend on currents, such as optical matrix elements that
influence oscillator strengths for optical transitions (e.g., as
in Ref. [32]).
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