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Stationary wave functions at the transition between plateaus of the integer quantum Hall effect are
known to exhibit multifractal statistics. Here we explore this critical behavior for the case of scattering
states of the Chalker-Coddington network model with point contacts. We argue that moments formed from
the wave amplitudes of critical scattering states decay as pure powers of the distance between the points of
contact and observation. These moments in the continuum limit are proposed to be correlation functions
of primary fields of an underlying conformal field theory. We check this proposal numerically by finite-size
scaling. We also verify the conformal field theory prediction for a three-point function involving two
primary fields.
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Introduction.—A revealing monitor of quantum critical
behavior driven by disorder is multifractal wave-function
statistics. In this vein, theory and experiment have focused
on the multifractality at Anderson localization transitions
between different topological phases of disordered elec-
trons in two dimensions, the prime example being the
transition between plateaus of the Hall conductance in the
integer quantum Hall (IQH) effect [1].
There has long been a consensus that it should be

possible to describe the IQH transition by a conformal-
invariant effective field theory. Yet, in spite of many efforts
[2–4], it remains an unsolved problem to identify that
conformal field theory (CFT) description. To make progress
with the search for it, one needs to find the conformal
fields and determine their scaling dimensions. A step in this
directionwas taken in [5,6], where themoments of the point-
contact conductance were introduced and studied as corre-
lation functions. Alas, these are coherent sums of conformal
field correlators and therefore do not give direct access to
individual conformal fields in the pure form; see [7] for a
recent discussion.
The purpose of this Letter is to put forth a large (and so

far unrecognized) class of multifractal observables that
correspond directly to correlators of CFT primary fields.
Our results are motivated by a recent σ-model based classi-
fication of scaling fields at Anderson transitions [8,9]. The
new feature here is that we focus on the scattering states of an
open system,while the previouswork concernedmoments of
the local density of states for closed systems. For concrete-
ness and simplicity, we work with the Chalker-Coddington
(CC) network model.
The CC model is known to be related by a duality

transformation to a statistical mechanical system of the
vertex-model type [10,11]. The main advance of our work
is to construct lattice approximations for pure scaling fields
on both sides of the duality—as scattering observables of
the CC model and, equivalently, as operators of the vertex

model. Both representations serve a purpose. Based on
the latter, we argue that our lattice operators indeed are
discretizations of pure scaling fields, while the former
makes it possible to compute their conformal dimensions
numerically by finite-size scaling.
CC model and scattering states.—We begin with a quick

review of the CC model [12]. This is a network model for
the quantum dynamics of an electron moving in two
dimensions under the influence of a strong magnetic field
and a random electric potential. Formulated on a square
lattice, the model is built from elementary plaquettes with a
definite sense of circulation that alternates between neigh-
boring plaquettes. The links of the network are directed
accordingly, so that each site has two incoming and two
outgoing links. The electron wave function lives on the
links and evolves in discrete time as jψðtþ 1Þi ¼ UjψðtÞi
by a unitary operator U ¼ UsUr. The factor Ur is a
diagonal matrix modeling the propagation along the links;
it assigns to each link a random, independent, and uni-
formly distributed U(1) phase. The factor Us is nonrandom
and consists of 2 × 2 matrices that describe the transfer
from incoming to outgoing links at each site. When the
probabilities for transfer to the left or right are equal, the
model is critical and falls into the universality class of
the IQH transition [12].
While it is of some interest to study the spectral

properties and stationary wave function statistics of the
closed network, here we turn to an open network. One
major advantage of the open setting is that it allows one to
formulate and study CFT correlators right at the critical
point. (In contrast, Green’s functions of the closed system
are defined by introducing a regularization which places
the system slightly off criticality.)
The network is opened up by severing a subset of links

C ¼ fc1;…; cng, which we call point contacts. Each cut
makes for one network-incoming and one network-outgoing
link where electric current is injected, respectively, drained
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by connecting the network to charge reservoirs. The dynam-
ics in the presence of the point contacts is [5]

jψðtþ 1Þi ¼ U

�
QjψðtÞi þ

Xn
l¼1

jclial
�
; (1)

where the projector Q ¼ 1 −
P

n
l¼1 jclihclj implements the

draining action at the outgoing open ends, and al is the
amplitude of the flux per time step fed into the incoming end
at cl. We then consider stationary states of this open-network
dynamics. Without loss we take the quasienergy to be zero,
as the statistical properties of the network model are
independent of it. We refer to the solutions of the statio-
narity condition jψðtþ 1Þi≡ jψðtÞi as scattering states.
For a system with n point contacts, a basis of scattering states
is furnished by

jψki≡ Uð1 −QUÞ−1jcki ðk ¼ 1;…; nÞ: (2)

Note that ∥QU∥ < 1, which ensures that the inverse exists
as a convergent power series ð1 −QUÞ−1 ¼ P∞

t¼0 ðQUÞt.
Main results and numerics.—The first result to be

announced is a statement about two-point functions,
allowing one to measure the scaling dimensions of primary
fields. Consider a set of links R ¼ fr1;…; rng for the
purpose of (noninvasive) observation, and define for i, j,
m ¼ 1;…; n,

Am ¼ DetKðmÞ; Kij ¼
Xn
k¼1

ψkðriÞψkðrjÞ; (3)

where KðmÞ denotes the upper-left m ×m submatrix of K.
These observables are the open-network counterparts of
those considered in [9]. Suppose now that coarse graining
of the lattice takes the contact and observation regions
(C and R) to single points, i.e., ri → r and ci → c for all i,
while r and c remain distinct. Denoting disorder averages by
Ef…g and CFT correlators as h…i, we then claim that [13]

EfðAq1−q2
1 Aq2−q3

2 � � �Aqn
n ÞðR;CÞg

¼ a2Δq1 ;…;qn hφq1;…;qnðrÞΦðcÞi; (4)

where q1;…; qn are complex numbers, φq1;…;qn is a CFT
primary field with scaling dimension Δq1;…;qn , the operator
ΦðcÞ represents the contacts, and a is the nonuniversal scale
parameter of the network. Even though ΦðcÞ is not a pure
scaling field, it here contributes a definite scaling dimension
Δq1;…;qn due to the orthogonality principle for two-point
functions. Thus, for an infinite planar network, we predict
that the observable in (4) depends on the distance between
the contact and observation regions as a pure power
jr − cj−2Δq1 ;…;qn . For the special choice of q2¼���¼qn¼0

this prediction reduces to Efjψ cðrÞj2q1g ∝ jr − cj−2Δq1 ;0;…;0 ,
which strongly suggests that Δq1;0;…;0 coincides with the

multifractality spectrum of the local density of states [1].
The analytical arguments leading to (4) are sketched below.
Next we support our proposal by computing numerically

some of the observables above. We consider cylindrical
networks of length L ¼ 400 (with reflecting boundary
conditions) and eight different circumferences W ∈
f19; 22;…; 40g. We use Eq. (2) to compute the scattering
states for an ensemble of 106 disorder realizations.
To illustrate the result (4), we focus on the example of
EfAq

nðR;CÞg for n contact and n observation links.
Assuming (4) and using the CFT prediction for the
correlator of (spinless) primary fields on an infinite cylinder
of width W (see, e.g., [14]), we have

EfAq
nðR;CÞg ¼ αq;nζ

−2Δq;n
rc ; (5)

ζrr0 ¼
����Wπ sinh

π

W
ðτ − τ0 þ iσ − iσ0Þ

����; (6)

where Δq;n ≡ Δq;…;q, and the form factor αq;n is due to the
contact operator ΦðcÞ. The variables σ and τ are the angular
and longitudinal cylindrical coordinates of r.
Detailed numerical investigations were performed of the

correlator EfAq
nðR;CÞg for n ¼ 1; 2; 3. For n > 1 we place

the contacts on equivalent links of n plaquettes next to each
other; we checked for n ¼ 2 that our results do not change
significantly when this choice is modified. Data for the
numerically most demanding case of n ¼ 3 are shown in
Fig. 1(a) for q ¼ 0.5 as an example. We see an excellent
agreement over the whole range of distances jr − cj
between the numerical data (circles) and the functional
behavior (solid line) predicted by (5).
In order to extract exponents and make an estimate of the

statistical errors, we use the following procedure. Given q
and n, we fit the data for EfAq

nðR;CÞg by the prediction (5)
for different W. This fit yields eight “raw” exponents
Δq;nðWÞ from which we calculate the mean value and the
standard deviation. For n ¼ 3 and q ¼ 0.5, the inset of
Fig. 1(a) shows the data collapse by the optimal value
of Δ0.5;3 thus obtained. We interpret the excellent quality of
these fits as strong evidence that the Aq

n indeed give rise to
CFT primary fields in the continuum limit.
Having established the existence of these fields, we now

turn to a systematic analysis of the scaling dimensions Δq;n.
These are constrained by Δq;n ¼ Δn−q;n due to an argument
[9] using Weyl group invariance. The simplest ansatz
compatible with that constraint would be Δq;n ∝ C2ðq; nÞ,
with C2 ¼ nqðn − qÞ the quadratic Casimir eigenvalue of
the symmetry group at hand, but it is known from [15,16]
that this so-called “parabolic approximation” needs improve-
ment by including in Δq;1 the square of C2 with a small
coefficient. Focusing on n ¼ 1, we find that Δq;1 is in fact
described reasonably well by the parameter set of [15,16].
The situation changes, however, when we take into account
our results for n ¼ 2; 3, as shown in Fig. 1(b). To get a good
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fit of all data n ¼ 1; 2; 3, simultaneously, we find it
necessary to include in Δq;n the Casimir eigenvalue of
degree 4 [17]. Evaluated on Aq

n this is

C4ðq; nÞ ¼ −n½qðn − qÞ�2 þ nðn2 − 1=2Þqðn − qÞ: (7)

We leave it for future work to decide whether this is a real
effect or might have another explanation, e.g., by the
presence of irrelevant operators perturbing the CC model
away from the CFT fixed point [7].
To strengthen our claim that the operators in (4) behave

as CFT primary fields, we present a second result, this time
for a three-point function. Here we sacrifice generality for
simplicity and open the network at just a single contact link
c0 to study the scalar-type observable A1ðrÞ ¼ jψ0ðrÞj2 at
two observation links r1 and r2. Our assertion is that, after
coarse graining,

Efjψ0ðr1Þj2q1 jψ0ðr2Þj2q2g ∝ hφq1ðr1Þφq2ðr2ÞΦðc0Þi (8)

depends on r1, r2, c0 as a CFT three-point function.
Because of the special nature of the operators φq1 , φq2
as “highest-weight vectors” (see below), the contact oper-
atorΦðc0Þ still contributes a definite scaling dimensionΔq0 ,
where q0 ¼ q1 þ q2. The CFT prediction for three-point
functions [14] then gives

Efjψ0ðr1Þj2q1 jψ0ðr2Þj2q2g ∝

× ζ
−Δq1

−Δq2
þΔq0

r1r2 ζ
−Δq2

−Δq0
þΔq1

r2c0 ζ
−Δq0

−Δq1
þΔq2

c0r1 ; (9)

where ζrr0 was defined in Eq. (6). In our numerical test we
take r1 and r2 to have the same τ coordinates and r1 to share
the σ coordinate of the point contact c0, while r2 moves
along the circumference of the cylinder. Figure 1(c) shows
the angular dependence observed forW ¼ 50 together with
the prediction (9) at q1 ¼ q2 ¼ 1=4. The exponents Δ1=4;1
and Δ1=2;1 used are those extracted from the study of the
two-point function.

Analytical argument.—Finally, we sketch the reasoning
that leads to Eqs. (4) and (8); details and generalizations
will be discussed in [18]. We use a variant of the Efetov-
Wegner method to pass from the CC model to a super-
symmetric vertex model (see, e.g., [10,11]) as follows.
For each link r of the network we introduce n replicas
of charged (�) canonical bosons and fermions: b�;kðrÞ,
f�;kðrÞ (k ¼ 1;…; n), acting on a Fock space with vacuum
j0ri. The time-evolution operator U of the closed network
is then replaced by its second quantization ρðUÞ acting on
the tensor product of all these Fock spaces. This factors as
ρðU ≡ eXÞ ¼ ρþðeXÞρ−ðeXÞ where, assuming the summa-
tion convention,

ρþðeXÞ ¼ eb
†
þ;kðrÞXrr0bþ;kðr0Þþf†þ;kðrÞXrr0fþ;kðr0Þ;

ρ−ðeXÞ ¼ e−b−;kðrÞXrr0b
†
−;kðr0Þþf−;kðrÞXrr0f

†
−;kðr0Þ: (10)

It is important that second quantization preserves operator
products. In particular, ρðUsUrÞ ¼ ρðUsÞρðUrÞ. Statistical
averages in this Fock representation are defined by
hAiF≔STrρðUÞA, where STr is the supertrace over the
total Fock space.
For simplicity, we now specialize to n ¼ 1 and return

to n ≥ 1 below. Given Qε ¼ Qþ εjcihcj, let

π0ðcÞ ¼ j0cih0cj ¼ lim
ε→0þ

ρþðQεÞρ−ðQ−1
ε Þ (11)

be the projector on the vacuum state at c. The second-
quantized formalism is connected to observables of the
first-quantized network model by the basic identities

hb†þðrÞbþðrÞπ0ðcÞiF ¼ hrjQUð1 −QUÞ−1jri;
hb−ðrÞb†−ðrÞπ0ðcÞiF ¼ hrjð1 −U−1QÞ−1jri: (12)

To exploit these, we introduce the following key objects for
an observation link r:

(a) (b) (c)

FIG. 1. (a) Fits of EfA0.5
3 g by the CFT prediction (5) for W ∈ f19; 22;…; 40g (bottom to top) as a function of τ ¼ jr − cj. Inset:

Collapse of rescaled curves lnEfA0.5
3 g þ 2Δ0.5;3 lnW vs ln x=W using Δ0.5;3 ¼ 2.15. (b) Scaling exponents Δq;n for EfAq

ng. The solid
curves are plots of Δq;n ¼ 0.28C2 − 0.0011C2

2 þ 0.0014C4. Inset: zoom in for n ¼ 1. (c) Comparison between the CFT prediction (9)
and the angular dependence of the three-point function (8) computed for W ¼ 50 and τ1 ¼ τ2 ¼ 10; 20;…; 60 (top to bottom).
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Zqðr; cÞ ¼ hðB†BÞqðrÞπ0ðcÞiF ; (13)

B† ¼ b†þ − eiαb−; B ¼ bþ − e−iαb†−; (14)

where eiα is any (fixed) unitary number. Note the vanishing
commutator ½B; B†� ¼ 0. Note also that neither B nor B†

annihilates any state in Fock space. Therefore, the operator
B†B is strictly positive and ðB†BÞq makes good sense
for any q ∈ C. Moreover, Wick’s theorem holds in our
noninteracting-particle situation before disorder averaging.
Thus for q a positive integer we have

Zqðr; cÞ ¼ q!Z1ðr; cÞq: (15)

This extends to complex q by analytic continuation. The
basic correlator Z1ðr; cÞ is expressed in terms of the
scattering state jψ ci by the following computation; it is
based on the identities (12) and in the last step uses that
scattering states with incoming-wave and outgoing-wave
boundary conditions are unitarily related to each other:

Z1ðr; cÞ ¼ hðb†þbþ þ b−b†−ÞðrÞπ0ðcÞiF
¼ hrjð1 −U−1QÞ−1U−1ð1 −QÞUð1 −QUÞ−1jri
¼ jhrjð1 −U−1QÞ−1U−1jcij2 ¼ jψ cðrÞj2: (16)

Next we take the disorder average. This is straightfor-
ward in the Fock representation since ρðUÞ ¼ ρðUsÞρðUrÞ
and averaging over the random phases in ρðUrÞ simply kills
all states with nonzero charge. For any charge-conserving
operator A we thus obtain

EfhAiFg ¼ EfSTrAρðUsÞρðUrÞg ¼ STr0AρðUsÞ; (17)

where STr0 is STr restricted to the zero-charge sector. In this
way we arrive at what is called a vertex model. We denote
vertex-model averages by hAiV ≡ STr0AρðUsÞ.
The operators B†B and π0 conserve charge, so by taking

the disorder average of (13) and using (15,16) we get

Efjψ cðrÞj2qg ¼ q!−1hðB†BÞqðrÞπ0ðcÞiV : (18)

This is an exact result. Although our focus has been on
n ¼ 1, the general case n ≥ 1 can be handled in a similar
way. The outcome is an exact relation expressing network-
model averages as vertex-model averages:

EfðAq1−q2
1 Aq2−q3

2 � � �Aqn
n ÞðR;CÞg

¼ fðqÞhðDq1−q2
1 Dq2−q3

2 � � �Dqn
n ÞðRÞπ0ðCÞiV ; (19)

DmðRÞ ¼ Det

�Xm
k¼1

B†
kðriÞBkðrjÞ

�
i;j¼1;…;m

: (20)

Here, fðqÞ is a combinatorial factor. The determinants
DmðRÞ are well defined because the matrix elements

P
B†
kðriÞBkðrjÞ all commute. The analytic continuation

to complex powers of Dm is well defined because Dm > 0.
We will now argue that the expression in (19) becomes

a pure scaling function in the continuum limit. The key
ingredient here is symmetry: the statistical average h…iV
is invariant under the global action of a group with
Lie superalgebra g≡ glð2nj2nÞ generated by all charge-
conserving bilinears in b�;k, f�;k, and their adjoints.
What is most remarkable about the operators Dm is their

property of being highest-weight vectors for g. By this we
mean that there exists a maximal Abelian subalgebra h ⊂ g
such that the Dm are (i) eigenoperators with respect to the
commutator action by all generators from h and (ii) are
annihilated by all the raising operators; i.e., the operators
from g which are positive root vectors for h. Since the
operation of taking the commutator satisfies the Leibniz
rule, these properties carry over to products of powers of
Dm. Thus φlat

q1;…;qnðRÞ≡Dq1−q2
1 ðRÞDq2−q3

2 ðRÞ � � �Dqn
n ðRÞ is

a highest-weight vector for g. The operators φlat
q1;…;qnðRÞ for

different q ¼ ðq1;…; qnÞ (modulo Weyl transformations)
lie in inequivalent representations of g. Therefore, by a
Schur lemma argument they cannot be mixed by the
transfer matrix of the g invariant vertex model. Thus we
expect them to become pure scaling fields of the renorm-
alization flow in the continuum limit. (This has to taken
with a grain of salt since our CFT has a logarithmic
sector [19].)
Finally, our methods generalize to any multipoint func-

tion of the scaling operators given here. In particular, one
can derive Eq. (8) by the reasoning above. To arrive at (9)
withΔq0 ¼ Δq1þq2 one uses that the product of two highest-
weight vectors with weights q1 and q2 is another highest-
weight vector with weight q0 ¼ q1 þ q2.
Summary and outlook.—We have presented new meth-

ods and relations by which to make a systematic study of
the IQH plateau transition. For the first time in the context
of Anderson transitions, we have identified and studied
operators whose correlation functions decay as pure powers
at criticality and thus are candidates for CFT primary fields.
Although we applied our techniques to the specific case of
the CC model, they are rather general and can be used for
other situations as well. Future applications will include
the spin quantum Hall transition [20] and the study of
boundary criticality [21].
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