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Heavy particles suspended in a turbulent flow settle faster than in a still fluid. This effect stems from a
preferential sampling of the regions where the fluid flows downward and is quantified here as a function of
the level of turbulence, of particle inertia, and of the ratio between gravity and turbulent accelerations. By
using analytical methods and detailed, state-of-the-art numerical simulations, settling is shown to induce an
effective horizontal two-dimensional dynamics that increases clustering and reduce relative velocities
between particles. These two competing effects can either increase or decrease the geometrical collision
rates between same-size particles and are crucial for realistic modeling of coalescing particles.

DOI: 10.1103/PhysRevLett.112.184501 PACS numbers: 47.27.-i, 47.10.-g

Many industrial, atmospheric, and astrophysical phe-
nomena ranging from the microphysics of cloud formation,
to planet formation in a dusty circumstellar disk of gas,
involves the modeling of the interactions between small
solid particles suspended in a turbulent carrier flow. Two
main effects are typically at play: a viscous drag that
particles experience with the agitated fluid and an external
force, such as gravity, that acts because of their density
contrast with the fluid. While drag is predominant for small
particles, gravity takes over the dynamics of large particles
and most studies treat these two asymptotics independently.
However, it is usually at this critical transition that standard
modeling fails, as is evident when estimating, for instance,
the rate at which rain is triggered in warm clouds [1,2].
Most models are unable to circumvent a bottleneck in the
droplet growth for diameters around 20–40 μm. A key
improvement might be to combine turbulent and gravita-
tional effects.
In this Letter, we understand the intriguing interplay

between turbulence, gravity, and particle sizes. This ques-
tion is of fundamental importance in fluid dynamics, in
particular, and in nonequilibrium statistical physics, in
general, as it is central to modeling coalescences in natural
or laboratory droplet suspensions. The most noticeable
effect of turbulence on the settling of heavy particles is the
increase of their terminal velocity induced by a preferential
sweeping along the downward fluid flow [3–5]. This
phenomenon is mostly understood on qualitative grounds
and has been quantified only in model flows [6].
Furthermore, very little is known on the effect of gravita-
tional settling on two-particle statistics. Fundamental theo-
retical and numerical studies of the clustering of particle
pairs [7,8] and of the enhancement of collisions due to
inertia [9,10] usually neglect gravity. We present here, by
combining state-of-the-art direct numerical simulations
with theoretical results based on our asymptotic analysis,
a systematic study of the dynamical and statistical

properties of particles as a function of (i) the level of
turbulence of the carrier flow (Reynolds number), (ii) the
inertia of the particles (Stokes number), and (iii) the ratio
between the turbulent accelerations and gravity (Froude
number).
We consider a fluid flow whose velocity u is a solution to

the incompressible Navier-Stokes equation

∂tuþ ðu ·∇Þu ¼ −∇pþ ν∇2uþ f ; ∇ · u ¼ 0; (1)

where ν is the fluid kinematic viscosity. Homogeneous
isotropic turbulence is maintained in a statistical steady
state by the large-scale forcing f . We perform direct
numerical simulations by using the parallel solver LATU,
which is pseudospectral in space and involves a third-order
Runge-Kutta scheme for time marching. We use different
spatial resolutions, 2563, 10243, and 20483 corresponding
to Taylor-scale Reynolds numbers Rλ ¼ urms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=ðενÞp

≈
130, 290, and 460, respectively (urms ¼ hu2xi is the root-
mean-square velocity and ε ¼ νh∥∇u∥2i the average dis-
sipation rate; see [11]).
Particles are assumed much smaller than any turbulent

scale, much heavier than the surrounding fluid, and with a
small Reynolds number associated to their slip velocity.
They are then moved by the fluid through a viscous Stokes
drag and their trajectories XpðtÞ follow

dXp

dt
¼ Vp;

dVp

dt
¼ −

1

τp
½Vp − uðXp; tÞ� þ g; (2)

where g is the acceleration of gravity. The relaxation time
reads τp ¼ 2ρpa2=ð9ρfνÞ, ρp, and ρf being the particle and
fluid mass density and a the particle radius. In our
simulations individual particle trajectories are integrated
for different values of τp and g ¼ jgj. The fluid velocity at
the location of the particles is evaluated by linear inter-
polation. Particle inertia is measured in terms of the Stokes
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number St ¼ τp=τη, where τη ¼
ffiffiffiffiffiffiffi
ν=ε

p
is the turnover time

associated to the Kolmogorov dissipative scale
η ¼ ν3=4=ε1=4. The effect of gravity is measured by the
Froude number Fr ¼ ε3=4=ðgν1=4Þ defined as the ratio
between the typical turbulent acceleration η=τ2η and that
of gravity. In all our simulations we have used 10 different
Stokes numbers and 5 different values of the Froude
number (including the case of no gravity). Furthermore,
to obtain reliable statistics, we use a very large number
of particles Np, in each of our simulations: for
Rλ ≈ 460; Np ¼ 109, for Rλ ≈ 290; Np ¼ 1.28 × 108, and
for Rλ ≈ 130; Np ¼ 8 × 106.
Figure 1 shows a representative snapshot of the modulus

of the vorticity ω ¼ ∇ × u in a thin slice of our three-
dimensional flow, together with the position of particles
with the same Stokes (St ¼ 1) but different Froude num-
bers Fr. We observe that when gravity is negligible
(Fr ¼ ∞), the particle distribution correlates with low-
vorticity regions. Increasing the effect of gravity does not
instantaneously destroy particle clusters but rather gives
them some anisotropy as they get more and more aligned
with the vertical direction êz ¼ −g=g. This indicates that
settling is responsible for a two dimensionalization of the
particles dynamics and, as observed on the right-most
panel, clustering is still present but concentration gradients
are mainly in the horizontal directions.
To understand further the underlying mechanisms, let us

estimate the average settling velocity Vg ¼ −hVp · êzi.
Clearly from (2), the statistical stationarity of the particle
velocity implies that Vg ¼ τpg − huzðXp; tÞi. The first term
is equal to the terminal velocity of a particle with response
time τp in a still fluid. It was observed that settling particles

in a turbulent flow are more likely to sample regions where
the vertical fluid velocity is aligned with gravity, leading to
an enhancement of their average settling speed [3,4]. This
effect is also observed in our simulations as shown in
Fig. 2, which represents the relative increase in settling
velocity ΔV ¼ ðVg − τpgÞ=ðτpgÞ ¼ −huzðXp; tÞi=ðτpgÞ
(compared to the terminal velocity in still fluid) as a
function of the particle Stokes number and for different
values of Fr and Rλ. One notices that the effect is the
strongest for the largest values of the Froude number (when
turbulent accelerations dominate over gravity) and, at
sufficiently large particle inertia. Conversely, for low-
inertia particles (St ≪ 1), the gain ΔV is almost indepen-
dent of both the Reynolds and the Froude numbers.
To understand quantitatively these observations, let us

first consider the asymptotics St ≪ 1. To leading order, the
particles are as if advected by an effective compressible
velocity field [3], namely, Vp ≈ vðXp; tÞ with

v ¼ uþ τpg − τp½∂tuþ ðuþ τpgÞ · ∇u�: (3)

We focus on the motion in the horizontal directions ðx; yÞ
transverse to that of gravity and use (3) to write the
correlation huz∇⊥ · v⊥i, where v⊥ ¼ ðvx; vyÞ. All terms
except the advection due to settling vanish by incompress-
ibility or isotropy of the fluid velocity field, so that

huz∇⊥ · v⊥i ¼ τ2pghð∂zuzÞ2i > 0: (4)

Hence, the horizontal clustering of particles (negative
divergence) is on average where the flow heads downward
(uz < 0). This quantifies the preferential sweeping ideas of
[4]. With arguments similar to those used in [1] (see also
[12]) for density correlations, we can relate the average
vertical velocity along particle paths to the correlation (4).

FIG. 1 (color online). Snapshot of the vorticity modulus (Left;
yellow = low values, green = high values) and of the particle
positions for Rλ ¼ 130, St ¼ 1 and three different values of the
Froude number in a slice of thickness 10η, width 130η, and height
520η. The vertical arrow indicates gravity.

FIG. 2 (color online). Relative increase of the settling velocity
ΔV as a function of the Stokes number St for various Froude
numbers, as labeled, and Rλ ¼ 130 (thin symbols, plain lines),
Rλ ¼ 290 (filled symbols, dashed lines), and Rλ ¼ 460 (open
symbols, broken lines). Inset: ½R1=2

λ =Fr�1=2ΔV as a function of
St=½R1=2

λ Fr� for the same data.
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In the limit St ≪ 1, the divergence∇⊥ · v⊥ gives indeed the
bias due to the preferential sampling by inertial particles.
This leads to huzðXp; tÞi ∝ τηhuz∇⊥ · v⊥i and by using (4)
to ΔV ∝ τητphð∂zuzÞ2i ∝ St, confirming the linear behavior
independent of Fr and Rλ observed in Fig. 2 at small Stokes
numbers.
In the other asymptotics (St ≫ 1), the settling velocity

Vg gets very large and the fluid velocity seen by the
particles becomes short correlated in time. The particles
have an almost ballistic motion in the vertical direction and
diffuse in the horizontal plane. This occurs when the time
L=Vg, required by the particle to traverse the integral scale
L ¼ u3rms=ε, is much shorter than the large-scale correlation
time τL ¼ L=urms. Rescaling time by τLðVg=urmsÞ and
space by L leads to approximating the horizontal dynamics
in nondimensional units as

dV⊥
p

ds
≃ −

1

S̄
½V⊥

p − ~uðX⊥
p ; sÞ�; (5)

where S̄ ¼ ðτp=τLÞðurms=VgÞ and ~u is a two-dimensional
white-noise-in-time velocity field whose correlations have
the same spatial structure as u. This approach is similar to
that developed in [13] for particles with very large inertia.
Hence, the rescaled single-particle statistical properties
depend only on the effective Stokes number S̄. In particular,
the falling speed of the particle takes the form
Vg ≃ τpgþ u2rmsΨðS̄Þ=Vg, where Ψ is a nondimensional
function that accounts for preferential sampling. To leading
order, Vg ≃ τpg, so that ΔV ∼ΨðS̄ÞRλðFr=StÞ2 and
S̄ ∼ Fr=

ffiffiffiffiffi
Rλ

p
≪ 1, which is independent of the particle

Stokes number. As the velocity field appearing in (5) is
a white noise, one expects that for S̄ ≪ 1 statistical
observables can be written as a series of half-integer
powers of S̄ (see, e.g., [14]), so that ΨðS̄Þ ∼ S̄1=2. This
leads to

ΔV ∝ R3=4
λ Fr5=3St−2 (6)

for St ≫ R1=2
λ Fr and Fr ≪ R1=2

λ . This behavior is confirmed
by our data, as can be seen in the inset of Fig. 2.
We now turn to small-scale two-particle statistics. The

approach in terms of the effective dynamics (5) extends to
the linearized dynamics, i.e., to the tangent system asso-
ciated to (2), which describes the evolution of infinitesimal
separations between particles in terms of the fluid gradient
∇u along their paths. When the fall speed is large enough,
the particles travel through the correlation length η of∇u in
a time shorter than its correlation time τη. This occurs when
Vg ≫ uη ¼ η=τη ¼ ðνεÞ1=4. Rescaling time by τηðVg=uηÞ
and space by the Kolmogorov scale η allows one to
approximate the time evolution of the separation R as

d2R
ds2

≃ −
1

~S

�
dR
ds

− R · σðsÞ
�
; (7)

where σ is a Gaussian tensorial noise with co-variance
hσijðsÞσklðs0Þi ¼ ðν=εÞh∂iuj∂kuliδðs − s0Þ. The one-point
one-time strain tensor co-variance is here evaluated along
particle paths to account for preferential sampling. The
effective Stokes number now reads ~S ¼ Stðuη=VgÞ and in
the asymptotics Vg ≫ uη, small-scale two-particle statistics
depend solely on ~S. Remarkably, when the settling velocity
is close to that in still fluid (i.e., ΔV ≪ 1), the effective
Stokes reads ~S≃ Fr, so that statistics become independent
of St when St ≫ Fr.
An important observable measuring particle clustering is

the correlation dimension D2 of their spatial distribution
[8]. It is given by P2ðrÞ ∝ rD2 for r ≪ η, where P2ðrÞ is the
probability that two particles are within a distance r. This
fractal dimension is shown in Fig. 3 as a function of St for
different values of Fr and Rλ ¼ 460. One observes that
gravity acts in a nonuniform manner. It tends to enhance
concentration (decrease D2) when both the Stokes and the
Froude numbers have moderate values. When Fr ≪ 1,
clustering is decreased for St≲ 1 and increased for
St≳ 1. For all finite Fr, one observes that D2 saturates
to a finite value when St → ∞. This can be explained by the
equivalence between the two-point dynamics and (7). For
Vg ≫ uη, the fractal dimension D2 is a function of the
effective Stokes number ~S only, which for St ≫ Fr
becomes independent of St. In this asymptotics, the
correlation dimension depends solely on Fr. The limiting
value ofD2 is a nonmonotonic function of Fr. It is close to 3
when either Fr ≫ 1 or Fr ≪ 1 as the corresponding values
of S̄ ∼ Fr characterizing the dynamics (7) are related in both
cases to space-filling distributions. In delta-correlated
flows, the correlation dimension is known to behave
linearly at small Stokes numbers [14]. It is, hence, expected
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FIG. 3 (color online). Correlation dimension D2 of the particle
distribution as a function of the Stokes number for Rλ ¼ 460 and
various Froude numbers as labeled. Smaller Reynolds numbers
(not shown here) display a similar behavior.
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that for Fr ≪ 1, D2 ≃ 3 − C Fr, where C is a positive
constant.
The increase in clustering observed for order-unity

values of St and Fr means that settling can significantly
impact the time scales of interaction between particles.
When interested, for instance, in the collisions, estimations
of the geometrical rate involve the probability density that
two particles are at a distance r ¼ 2a equal to the sum of
their radii and thus scales as ð2aÞD2−1. However, this
quantity alone is not enough as the collision rate involves
also the typical velocity at which particles approach each
other. Indeed, for same-size particles, it is given by setting
r ¼ 2a in the approaching rate [15]

κðrÞ ¼ −hwθð−wÞδðjRj − rÞi; (8)

where w ¼ djRj=dt is the longitudinal velocity difference
between particles, θ the Heaviside function, and h·i the
average over all particle separations R. The approaching
rate can be expressed in terms of a conditional average
κðrÞ ¼ −hwθð−wÞjjRj ¼ riðdP2=drÞ, which involves the
average negative longitudinal velocity difference between
particles separated by a distance r. This last quantity
behaves also as a power of r for r ≪ η with an exponent
ξ1 given by the first-order structure function of particle
velocities [10]. This implies that κðrÞ ∼ rγ with γ ¼ ξ1þ
D2 − 1. The dependence of γ upon St, which encompasses
particle clustering and velocity differences statistics, deter-
mines how the collision rate depends on the particle size
and inertia. Figure 4 shows the velocity scaling exponent ξ1
as a function of St for the various relative strengths of
gravity we have investigated. In the case of no gravity
(Fr ¼ ∞), the particle velocity scaling exponent goes from
a behavior close to that of tracers (ξ1 ¼ 1) at small St

to an uncorrelated gas with scale-independent velocity
differences (ξ1 ¼ 0) for St → ∞. This transition relates
to the formation of fold caustics in the particle velocity field
[9,15]. Gravity acts this time in a monotonic manner since
ξ1 systematically increases when Fr decreases, indicating
that settling weakens small-scale velocity differences
between particles. The underlying mechanisms can be
understood in the asymptotics St ≫ Fr, again in terms of
the equivalent small-scale dynamics (7). When Fr
decreases, the effective Stokes number decreases, so that
particles get closer to tracers of the effective flow
and ξ1 → 1.
The two mechanisms determining the rate at which

particles collide, namely, preferential concentration and
large velocity differences, are thus affected in competing
manners by gravity. However the enhancement of particle
clustering takes over the decrease of velocity differences
when St ≲ Fr. This is evident in the inset of Fig. 4, which
shows the difference of the approaching rate scaling
exponents γðFrÞ − γð∞Þ between particles undergoing
gravity and those that do not. One clearly observes that
γðFrÞ < γð∞Þ for St≲ Fr, indicating that in this range
collision rates between same-size particles are larger in the
presence of gravity. At first glance these corrections could
seem tiny. However, they are responsible for an important
increase of the geometrical collision rate. For instance, in
highly turbulent cloud settings, namely, Fr ¼ 0.3 (corre-
sponding to ε ≈ 1000 cm2=s3 for the turbulent airflow), we
find an increase by more than a factor 2 of the collision rate
between St ¼ 0.4 particles (droplets with diameter
≈30 μm). This newly identified effect, which combines
turbulence and gravitational settling, clearly needs to be
borne in mind when improving existing models for
coalescing particle or droplet suspensions.
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