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Continuous feedback control of Langevin processes may be non-Markovian due to a time lag between
the measurement and the control action. We show that this requires one to modify the basic relation
between dissipation and time reversal and to include a contribution arising from the noncausal character of
the reverse process. We then propose a new definition of the quantity measuring the irreversibility of a path
in a nonequilibrium stationary state, which can also be regarded as the trajectory-dependent total entropy
production. This leads to an extension of the second law, which takes a simple form in the long-time limit.
As an illustration, we apply the general approach to linear systems that are both analytically tractable and
experimentally relevant.
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Introduction.—As famously illustrated by Maxwell’s
demon thought experiment [1], entropy production (EP)
in small thermodynamic systems can be reduced by the
intervention of an external agent that possesses some
information about the microstates. Recent years have seen
renewed interest in this idea due to the advances in the
manipulation of mesoscopic objects and a better under-
standing of the intimate relationship between EP and time
asymmetry at the microscopic level [2]. The ultimate goal
of these investigations is to develop a “thermodynamics of
feedback,” relating information and dissipation [3,4].
With this goal in mind, we focus in this Letter on

classical stochastic systems described by a Langevin
dynamics and submitted to a continuous, non-Markovian
feedback control. The non-Markovian character results
from a time lag between the signal detection and the
control action, which is a ubiquitous feature in biological
systems [5] and also plays an important role in many
experimental setups (e.g., laser networks [6]). Because of
memory effects, the conventional approach of stochastic
thermodynamics [7] is not applicable to such systems, and
even the basic identity (the so-called local detailed balance
condition), which is at the heart of fluctuation relations [2],
needs to be modified. Indeed, in order to relate the heat
dissipated along an individual trajectory to the statistical
weights of the trajectory and its time reversal, causality
must be artificially broken in the backward process, giving
rise to a specific “Jacobian” contribution. Such an effect
went unnoticed in previous theoretical studies that mainly
focused on discrete feedback protocols in which the
controller acts at predetermined times. In this case, the
reverse process is physically realizable [8], which is not
possible when the feedback is applied continuously. This
prompts us to propose a new definition of the fluctuating

entropy production in a nonequilibrium stationary state
(NESS), which in turn leads to a generalization of the
second law. We illustrate this general approach by a
detailed analytical and numerical study of linear systems.
Note that the present study is restricted to the case of a
deterministic (i.e., error-free) feedback control. Noise and
measurement errors are known to reduce the achievable
entropy reduction [3].
Dissipation and time reversal.—Without loss of general-

ity, we consider the one-dimensional motion of a Brownian
particle (or “system”) in contact with a heat bath in
equilibrium at inverse temperature β (Boltzmann constant
is set to 1 hereafter). The dynamics is described by a
second-order Langevin equation with additive noise

mẍþ γ _x − FðxÞ − FfbðtÞ ¼ ξðtÞ; (1)

where m is a mass, γ is a friction coefficient, FðxÞ ¼
−dUðxÞ=dx is a conservative force, and ξðtÞ is a delta-
correlated white noise with variance 2β−1γ (for simplicity,
a memoryless friction is assumed, but the formalism can
be generalized to a non-Markovian bath, as considered in
previous studies [9–11]). FfbðtÞ is the feedback control
force determined by the measurement outcomes and which
generally depends on the microscopic trajectory of the
system in phase space up to time t. It may be, for instance,
proportional to the position x at time t − τ, where τ is the
delay [see Eq. (19) below], or to the velocity _x, as illustrated
by Eq. (21) where τ is the relaxation time of the feedback
mechanism [12]. This latter case is a non-Markovian
generalization of the model studied in Refs. [13,14], which
describes feedback cooling (or cold damping) experimental
setups [15].
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In the normal operating regime of a continuous feedback
control, the system settles into a NESS in which heat is
permanently exchanged with the thermal environment (the
stability of the NESS depends on the various parameters
that specify the dynamics, e.g., the delay τ). Within the
framework of stochastic energetics [16], the heat dissipated
along an individual path X≡ fxt; _xtg during the time
interval [−T, T] is then defined as

q½X;X−�≡
Z

T

−T
dt½γ _xt − ξt�_xt

¼ −
Z

T

−T
dtfmẍt − FðxtÞ − Ffb½X;X−�g_xt; (2)

where X− denotes the path for t ≤ −T (we now make
explicit the fact that FfbðtÞ depends on both X and X−).
As in the case of Markov processes, we seek to relate

q½X;X−� to the time reversibility of the trajectories, so we
consider the probability of observing X for a given initial
state xi≡ ðx−T; _x−TÞ and a given past trajectoryX− [17,18].
This probability is determined by the noise history in the
time interval [−T, T] and given by

P½Xjxi;X−� ∝ jJ je−β
R

T

−T
dt S½X;X−�; (3)

where S½X;X−� is a generalized Onsager-Machlup action
functional [19],

S½X;X−� ¼
1

4γ
fmẍt þ γ _xt − FðxtÞ − Ffb½X;X−�g2; (4)

and J is the Jacobian of the transformation ξðtÞ → xðtÞ for
t ∈ ½−T; T�. Equation (3) can be made rigorous by dis-
cretizing the Langevin dynamics, as done for instance in
Ref. [11] (in particular, there is no need to specify the
interpretation of the stochastic calculus as long as m ≠ 0).
Because of causality, the Jacobian matrix is lower triangu-
lar so that J is a path-independent positive quantity that
can be included in the prefactor [20].
We now replace thewhole trajectory, includingX−, by its

time-reversed image fx†ðtÞ; _x†ðtÞg ¼ fxð−tÞ;−_xð−tÞg and
consider the probability P½X†jx†

i ;X
†
−� of observing the

reversed pathX†, given the pathX†
− for t ≥ T and the initial

state x†
i ¼ðxT;−_xTÞ. It is readily seen that in order to relate

q½X;X−� to the probabilities of X and X†, one must define
a new feedback force ~Ffb such that ~Ffb½X†;X†

−�t→−t¼
Ffb½X;X−�. (In the same vein, the driving protocol must
be reversed in the case of a discrete feedback.) Consider, for
instance, a time-delayed feedback Ffb ∝ xðt − τÞ. Then τ
mustbe changed into−τ inorder to recover theoriginal force.
Similarly, in the case of an exponential memory kernel,
Ffb ∝ ð1=τÞ R t

t0
dse−ðt−sÞ=τxðsÞ, one must change τ into −τ

and t0 into −t0. For a velocity-dependent feedback such as
that in Eq. (21), one must also change γ0 into −γ0. More
generally, such changes define a “conjugate” dynamics,

hereafter denoted by the tilde symbol (∼). This dynamics
is noncausal and does not correspond to any physical pro-
cess, but the conditional probability

~P½X†jx†
i ;X

†
−� ∝ jJ~ ½X�je−β

R
T

−T
dt ~S½X†;X†

−� (5)

with

~S½X†;X†
−� ¼

1

4γ
½mẍt − γ _xt − FðxtÞ − ~Ffb½X†;X†

−�t→−t�2

(6)

is a well-defined mathematical object. On the other hand,
noncausality makes the Jacobian matrix no longer lower
triangular, and J~ ½X� is in general a nontrivial (positive)
functional of the path [see Eq. (15) below]. Taking the ratio
of P½Xjxi;X−� and ~P½X†jx†

i ;X
†
−� then leads to our first

main result

P½Xjxi;X−�
~P½X†jx†

i ;X
†
−�

¼ J

J~ ½X� expfβq½X;X−�g; (7)

which generalizes the familiar identity relating dissipation
to time reversal [2]. The two signatures of non-Markovianity
are (i) the functional dependence on the past trajectory and
(ii) the presence of the ratio J =J~ ½X� due to the noncausal
character of the dynamics ∼.
Entropy production.—As in the Markovian case, the left-

hand side of Eq. (7) may be combined with normalized
distributions Pst½xi;X−� and Pst½x†

i ;X
†
−� in order to define

unconditional path weights. We, thus, introduce the quan-
tity R½X;X−�≡Δsm½X;X−�− lnJ~ ½X�=J þ lnPst½xi;X−�=
Pst½x†

i ;X
†
−�, where Δsm½X;X−�≡ βq½X;X−� is the change

in the entropy of the medium. By construction, R½X;X−�
satisfies the integral fluctuation theorem (IFT)

he−R½X;X−�ist ¼ 1; (8)

where h…ist denotes an average over all paths X and X−
weighted by the stationary probability Pst½X;X−�. It is
worth noting that R½X;X−� can also be expressed as

R½X;X−� ¼ Δstot½X;X−� − lnJ~½X�=J
− ΔI ½X−;xi;x

†
i � þ lnPst½X−�=Pst½X†

−�; (9)

where Δstot½X;X−�≡Δsm½X;X−�þlnpstðxiÞ=pstðx†
i Þ is a

“Markovian-like” contribution [7] and ΔI ¼ I ½x†
i ∶X†

−�−
I ½xi∶X−� ¼ lnPst½x†

i jX−
†�=pstðx†

i Þ− lnPst½xijX−�=pstðxiÞ
describes memory effects not contained in Δstot½X;X−�
(here, I is a fluctuating mutual information). A drawback,
however, is that R½X;X−� does not vanish when the
feedback control is switched off and the system goes back
to equilibrium (whereas Δstot ¼ 0). This problem is cured
by considering the coarse-grained functional Rcg½X� ¼
− ln

R
DX−P½X−jX�e−R½X;X−�, which from the definition

of R½X;X−� simply reads
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Rcg½X�≡ ln
Pst½X�
~Pst½X†� ; (10)

where ~Pst½X†�≡ R
DX− ~P½X†jx†

i ;X
†
−�Pst½x†

i ;X
†
−� [21]. By

construction, Rcg½X� obeys the IFT, and its average

hRcg½X�ist ¼
Z

DX Pst½X� ln Pst½X�
~Pst½X†� (11)

is the Kullback-Leibler divergence DðPstjj ~PstÞ between
the distributions Pst and ~Pst. This quantity is always non-
negative, which suggests that Rcg½X� properly describes
the overall EP along the trajectory X as a measure of the
irreversibility of the non-Markovian stationary process. In
particular, Rcg½X� does not vanish when Pst½X� ¼ Pst½X†�,
which occurs when all forces are linear (see below).
Asymptotic relations.—Rcg½X�, however, is a compli-

cated functional of the path (see Ref. [18] for explicit
calculations). On the other hand, its average has a simple
expression when the observation time becomes much
greater than the time constant characterizing the non-
Markovian feedback (we here assume that the correlation
to the past is finite or decreases rapidly with time, e.g.,
exponentially). The dependence on the past trajectory can
then be neglected, as well as the “border” terms that are
nonextensive in time. This leads to the asymptotic equality

hRcg½X�ist ∼ hΔsm½X�ist −
�
ln
J~ ½X�
J

�
st
; (12)

which can be rewritten as _Rcg ¼ _Sm − _SJ by defining the

rates _Rcg¼limT→∞1=ð2TÞhRcg½X�ist, _Sm¼1=ð2TÞhsm½X�ist,
and _SJ ¼ limT→∞1=ð2TÞhlnJ~ ½X�=J ist. Since hRcg½X�ist is
non-negative, Eq. (12) implies that

_Sm ≥ _SJ ; (13)

whichmay be regarded as the generalized second law for the
feedback controlled system. This is the central result of this
Letter.Thecontribution _SJ represents the entropic cost of the
feedbackcontrolandcanbeeithernegativeorpositive. Itmay
be interpreted as a phase space “contraction” or “expansion”
inducedby thenonstandard time-reversal transformation that
leads to Eq. (7) [see also the comment below after Eq. (20)].
In addition to the inequality Eq. (13), we conjecture the

following asymptotic integral fluctuation relation

lim
T→∞

1

2T
lnhe−ðΔstot½X;X−�−lnðJ~ ½X�=J ÞÞist ¼ 0; (14)

which is strongly supported by analytical [18] and numeri-
cal calculations (see Figs. 1 and 2). [Note that Eq. (14)
involves Δstot and not Δsm. The latter displays strong
fluctuations which are stabilized by the border term.]

Expression of the Jacobian.—The Jacobian J~ ½X� thus
plays a central role as the footprint of non-Markovianity,
and we devote the rest of this Letter to its calculation. The
starting point is the operator representation of the con-
jugate, noncausal Langevin equation. Generalizing the
analysis of Refs. [10,11], one easily finds that J~ ½X� can
be formally expressed as

J~ ½X� ¼ J exp Tr ln½δt−t0 − ~Mtt0 �

¼ J exp−
X∞
n¼1

1

n

Z
T

−T
dtf ~M∘ ~M∘::: ~M|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n times

gtt; (15)

where the operator ~Mðt; t0Þ is defined by

~Mðt;t0Þ¼fG∘ ~F0
totgtt0≡

Z
T

−T
dt00Gðt−t00Þ ~F0

totðt00;t0Þ: (16)

GðtÞ is the Green function for the inertial and dissipative
terms in the Langevin equation, and ~F0

totðt; t0Þ≡
δfFðxðtÞÞ þ ~Ffb½X;X−�g=δxðt0Þ. In the white noise limit,
one simply has GðtÞ ¼ γ−1½1 − e−γt=m�ΘðtÞ, where ΘðtÞ is
the Heaviside step function [11].
Application to linear Langevin processes.—To be more

specific, let us now consider the case of a harmonic
oscillator submitted to a linear feedback control, which
is relevant to many practical applications. Since we assume
that the noise in Eq. (1) is white and Gaussian, all
probabilities are Gaussian in the steady state and, thus,
P½X†� ¼ P½X�. As already stressed, this implies that the
quantity hlnP½X�=P½X†�ist, which is commonly regarded
as a measure of irreversibility (even for non-Markovian
processes [22–24]), is a misleading indicator, in contrast
with the quantity Rcg½X� introduced above.
The crucial simplification due to linearity is that the

functional derivative ~F0
fbðt; t0Þ and, thus, J~ become path

independent. In what follows, we only consider the
behavior for T → ∞ and defer a more extensive analysis
to Ref. [18]. The operation ∘ in Eqs. (15) and (16) is then a
convolution, and ~Mðt; t0Þ becomes a function of t − t0.
This implies that lnJ~=J is proportional to 2T, the
duration of the trajectory, and the asymptotic rate
_SJ ¼ limT→∞ð1=2TÞ lnJ~=J is obtained by Laplace trans-
forming Eq. (15),

_SJ ¼ 1

2πi

Z
cþi∞

c−i∞
ds ln½1 − ~MðsÞ�

¼ −
1

2πi

X∞
n¼1

1

n

Z
cþi∞

c−i∞
ds½ ~MðsÞ�n; (17)

where ~MðsÞ≡ R∞
−∞ dt ~MðtÞe−st and s ¼ cþ iω. This can

be also expressed as

_SJ ¼ 1

2πi

Z
cþi∞

c−i∞
ds ln

GðsÞ
~χðsÞ ; (18)
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where ~χðsÞ¼½GðsÞ−1− ~F0
totðsÞ�−1¼½ms2þγs− ~F0

totðsÞ�−1
is the Laplace transform of the response function ~χðtÞ
associated with the conjugate Langevin equation. Note that
we use here the bilateral Laplace transform because ~χðtÞ is
nonzero for t < 0. In general, the integral in Eq. (18) must
be computed numerically by properly choosing the value of
c (see Supplemental Material [25]).
As a first application, we consider the stochastic delay

equation

mẍðtÞ þ γ _xðtÞ þ axðtÞ þ bxðt − τÞ ¼ ξðtÞ (19)

that arises in a variety of mechanical or biological systems
(e.g., in neural networks involved in the control of move-
ment, posture, and vision [26]) and has been considered
previously in the overdamped limit m ¼ 0 [27,28] (see the
related discussion in Ref. [18]). When m ≠ 0, the system
settles into a NESS that is stable in a certain region of the
parameter space and is characterized by an effective kinetic
temperature Tk≡mh_x2ist [18]. Then, _Sm¼ðγ=mÞðβTk−1Þ,
which may become negative when the feedback is positive
(b < 0) and cools the system. This indicates that another

entropic contribution must be taken into account in order to
be consistent with the second law.
Focusing on the long-time limit, we first compute _SJ

from the expansion of Eq. (17) which yields (see
Supplemental Material [25])

_SJ ¼ b
m
τ−

bγ
2m2

τ2þbðγ2−am−4bmÞ
6m3

τ3þOðτ4Þ: (20)

Interestingly, if one replaces bτ by −γ0, the first-order
term identifies with the so-called “entropy pumping” rate
_Spu ¼ −γ0=m characteristic of a velocity-dependent feed-
back control [13,14]. One indeed recovers a force
proportional to the velocity by expanding xðt − τÞ at
first order in τ. In this sense, _SJ may be viewed as a
generalization of _Spu. To go beyond the small-τ expan-
sion, Eq. (18) must be integrated numerically, using
~χðsÞ ¼ ½ms2 þ γsþ aþ besτ�−1.
As an illustration, we plot in Fig. 1 the rates _Sm, _SJ , and

_Rcg ¼ _Sm − _SJ as a function of τ in the case of a positive
feedback. One can see that _Rcg is always positive, in
agreement with the generalized second law, Eq. (13). The
nonmonotonic behavior of _Sm is directly dictated by the
behavior of Tk, which is not the case for _SJ . Note also that
_Sm goes to a finite value for τ → ∞ whereas _SJ → 0. We
also indicate in the figure some values of _SJ obtained by
simulating the Langevin Eq. (19) and using Eq. (14), which
takes the simple form limT→∞ð1=2TÞ lnhe−Δstot½X;X−�ist ¼
− _SJ for a linear system. As can be seen, the agreement
with the theoretical value is already very good with T ¼ 10.
As second application, we consider the equation

mẍþ γ _xþ axþ γ0

τ

Z
t

−∞
dt0e−ðt−t0Þ=τ _xðt0Þ ¼ ξðtÞ; (21)

which may describe a feedback-cooled electromechanical
oscillator [15,29]. The molecular refrigerator model of
Refs. [13,14] is recovered in the Markovian limit τ → 0.
Since the system is linear, this also amounts to studying the
coupled Markovian equations [12]

mẍþγ _xþaxþγ0y¼ξðtÞ; _yþ1

τ
ðy− _xÞ¼ηðtÞ (22)

in the limit where the noise η becomes negligible. More
generally, such coupled equations are useful to investigate
the role of coarse graining and hidden degrees of freedom
on fluctuation theorems [30–32].
For γ0 > 0, heat permanently flows from the bath to the

system in the steady state, with a rate given by Eq. (77) in
Ref. [12] with T 0 ¼ 0. This yields _Sm ¼ −ðγγ0Þ=ðmγeffÞ
where γeff ¼ ðγ þ γ0Þð1þ γτ=mÞ þ aγτ2=m. The conjugate
dynamics is now defined by the changes τ → −τ and
γ0 → −γ0, and the expansion Eq. (17) then yields

_SJ ¼ −
γ0

m
þ γ0ðγ − γ0Þ

m2
τ þOðτ2Þ: (23)
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FIG. 1 (color online). The rates _Sm, _SJ , and _Rcg ¼ _Sm − _SJ as
a function of τ for the delay Langevin Eq. (19) withm ¼ 1, γ ¼ 1,
a ¼ 0.5, and b ¼ −0.25. The open circles are obtained from the
equation _SJ ≈ −ð1=2TÞ lnhe−Δstotist using T ¼ 10 and averaging
over 106 independent simulations of Eq. (19) with Heun’s method
and a time step Δt ¼ 10−3.
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FIG. 2 (color online). Same as Fig. 1 for the velocity-dependent
feedback described by Eq. (21). The model parameters arem ¼ 1,
a ¼ 1, γ ¼ 0.2, γ0 ¼ 0.4. Note that _SJ → −ðγ0=mÞ for τ → 0.
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As it must be, the first term is just the entropy pumping
contribution obtained in Ref. [13] in the Markovian limit.
This demonstrates that the present formalism is valid for
both position- and velocity-dependent feedback control.
Some typical results for the rates as a function of τ

are shown in Fig. 2. One again observes that the gene-
ralized second law (13) is obeyed and that Eq. (14) is in
good agreement with the numerical simulations of the
Langevin equation. In this model, both _Sm and _SJ go to
zero as τ → ∞.
Summary.—By studying the nature of time-reversal

breaking in the action functional of the path space measure,
we have identified the unusual mathematical mechanism
that contributes to the positivity of the entropy production
in Langevin systems submitted to a continuous (position-
or velocity-dependent) non-Markovian feedback control. In
particular, the present formalism extends the framework of
stochastic thermodynamics to the vast class of time-delayed
diffusion processes. An important step further will be to
include measurement noise. This will also clarify the
relationship with previous approaches, in particular the
abstract theoretical setup presented in Ref. [4], which still
remains elusive.
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