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Using the parity and time reversal symmetries of a two-dimensional spin-orbit coupled Bose-Einstein
condensate in a lattice created by the Zeeman field, we identify and find numerically various families of
localized solutions, including multipole and half-vortex solitons. The obtained solutions may exist at any
direction of the gauge field with respect to the lattice and can be found either in finite gaps (for repulsive
interatomic interactions) or in a semi-infinite gap (for attractive interactions). The existence of half-vortices
requires higher symmetry (the reflection with respect to the field direction). Stability of these modes makes
them feasible for experimental observation.
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A spin-orbit coupled Bose-Einstein condensate (SO-
BEC) [1] is a model where a synthetic spin degree of
freedom coupled with the momentum allows one to
simulate spin-orbit interactions in solid state systems and
at the same time naturally introduces different types of
gauge fields [2] which can be created and controlled by
external laser beams. The SO-BEC has acquired particular
importance after it was realized experimentally [3].
One can mention several distinguishing properties of

SO-BECs. First, due to linear coupling the atomic spectrum
is characterized by degeneracy of the energy minima at
finite momenta. This gives origin to stripe phases in two-
dimensional [4–6] and in one-dimensional [7] geometries.
Another inherent feature is the nonlinearity, stemming from
interatomic interactions, which in one-dimensional casemay
lead to formation of vector stripe-solitons [8–10]. Finally,
due to the spinor nature a SO-BEC supports topological
modes termed half-vortices. Such modes can be character-
ized by 2π rotation of the phase of one of the component on
the closed contour surrounding the mode center and zero
change of the total phase of the second component. Half-
vortices exist in 3He [11], and recently they were predicted
[12] and observed [13] in exciton-polariton condensates.
Considerable attention was paid to vortical structures in
repulsive SO-BEC in a parabolic trap [6,14,15] and vortex
lattices were obtained in the presence of optical lattice [16].
Turning to SO-BEC in a periodic environment, a lattice

can be created in different ways: as a periodic trapping
potentials for each of spinor components [16–18], by
spatially modulating Raman coupling [19], or by imposing
spatially dependent (periodic) Zeeman field [10,20–22]. In
the latter case the lattice appears exactly “inverted” for the

condensate components. One-dimensional solitons in such
lattices were addressed only recently in [10].
So far, however, no spatially localized matter-wave

solitons were reported in a two-dimensional SO-BEC in
lattice potentials. Meanwhile, two-dimensional lattices may
support solitons with nontrivial topologies, such as vortical
states, which do not exist in the one-dimensional geometry.
Due to the specific “inverted” character of Zeeman lattice
(ZL) for the spinor components the existence and stability
of two-dimensional solitons require separate analysis, espe-
cially for attractive interactions. In this Letter, for the first
time, we show that a rich variety of two-dimensional stable
solitonsmay exist in SO-BECheld in a Zeeman lattice. Such
solutions can be obtained and classified on the basis of
symmetries imposed by the ZL.
A SO-BEC obeys an intrinsic anisotropy introduced by

the gauge field which in the absence of a lattice determines
themirror-reflection symmetry. The degeneracy of the linear
spectrum imposes an additional spatial scale (defined by the
Bloch vectors of the degenerate points). External periodic
potentials may break the mirror symmetry and introduce
additional spatial scales. Thus, the interplay between gauge
field and lattice, which in the two-dimensional case can
have different orientations, may affect in a nontrivial way
theexistence, structure, andstabilityofnonlinearexcitations.
Two-dimensional solitons and their relationwith symmetries
of a SO-BEC constitute the main issue of this Letter.
We consider a SO-BEC described by the spinor Ψ ¼

colðΨ1;Ψ2Þ in a two-dimensional square ZL ΩðrÞ ¼
Ωðrþ e1Þ ¼ Ωðrþ e2Þ, where e1;2 are the lattice vectors
satisfying e1e2 ¼ 0 and je1;2j ¼ d with d being the lattice
constant (see the Supplemental Material [23]). We assumed
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that in the transverse direction the condensate is confined by
a strong harmonic trap (of the frequency ω0) and the recoil
energy Er ¼ 4π2ℏ2=ðmd2Þ (m being the atomic mass) is
small compared to ℏω0. Letting the weights γ of the Rashba
[24] and Dresselhaus [25] couplings to be equal, the system
Hamiltonian can bewritten asH ¼ Hlin þHnl, whose linear
part is given by [10,20,26] Hlin ¼ p2=ð2mÞ − ℏγσ1px −
ℏΩðrÞσ3=2 (σ1;2;3 are the Pauli matrices). The nonlinear
coupling occurs due to two-body interactions:Hnl ¼ gΨ†Ψ,
where inter- and intraspecies interaction strengths are
assumed to be equal to g (e.g., for F ¼ 1 and F ¼ 2 states
of 87Rb atoms the scattering lengths differ by a few percents
[3,27]). For generality of results, we consider both positive
and negative scattering lengths.
We are interested in spatially localized stationary solu-

tions Ψ ¼ ψðrÞe−iμt=ℏ, where ψðrÞ solves the stationary
coupled Gross-Pitaevskii (GP) equations and μ is the
chemical potential. Choosing the coordinate axes along
e1;2, we introduce the two-dimensional gauge field
A ¼ −γσ1e, where e ¼ ðcosφ; sinφÞ and φ ∈ ½0; π=4�.
Then the GP equations read

μψ ¼ −
1

2
∇2ψ þ iA∇ψ −

σ3
2
ΩðrÞψ þ gðψ†ψÞψ ; (1)

where r ¼ ðη; ζÞ, ∇ ¼ ð∂η; ∂ζÞ, and we adopted the dimen-
sionless units in which spatial scales are normalized to d, the
energy ismeasured inEr units and g ¼ 1 (g ¼ −1) stands for
positive (negative) scattering length. Then, for 87Rb atoms
(the scattering length ∼5.29 nm) confined by the harmonic
trap with ω0 ¼ 140 Hz the real number of atoms is
≈110 × N, where N ¼ N1 þ N2 and Nj ¼

R jψ jj2dr are
computed in the dimensionless units.
We explore a separable potential, ΩðrÞ ¼ δfcos½2ðη−

η0Þ� þ cos½2ðζ − ζ0Þ�g, not fixing yet the origin of the
coordinates, i.e., r0 ¼ ðη0; ζ0Þ. Below we set δ ¼ 6. The
band-gap structure of the ZL is shown in Fig. 1 (left panel).
At γ ¼ 0 the spinor components obey equivalent spectra,
determining the degenerate spectrum of the total system.
The SO coupling strongly modifies the band edges lifting
the degeneracy of the bands, which coincide at γ ¼ 0,
transforming them into two intersecting surfaces. The first
finite gap (located initially between two pairs of degenerate
bands) gradually shrinks with γ and ceases to exist at γ ¼
γmax [the vertical dashed line in Fig. 1 (right panel)]. Thus
SO coupling qualitatively affects the linear spectrum,
thereby affecting domains of soliton existence because
the chemical potential of solitons must fall into one of the
spectrum gaps. Our consideration is restricted to the semi-
infinite and the first finite gaps, i.e., to 0 < γ < γmax.
To find fundamental symmetries of the system in the

presence of both the field A and ZL, we introduce parity
(P) and time (T) reversal operators acting as Pfðr; tÞ ¼
fð−r; tÞ and Tfðr; tÞ ¼ f�ð−r; tÞ. We also consider an
operator â, such that if ψ is a solution of (1), then âψ is also

the solution, generally speaking different from ψ , and
identify an â-symmetric solution ψðrÞ as a solution
satisfying ψðrÞ ¼ âψðrÞ. Limiting the consideration to
the lowest symmetries, â2 ¼ 1, any branch of â-symmetric
nonlinear modes bifurcating from a linear Bloch state [28]
is found as ψk þ âψk where ψk is a linear Bloch state.
Presence of the SO coupling imposes important constraints

on the symmetries of the system. One of the symmetry
operators is readily found: â3 ¼ σ3T. An â3-symmetric
solution can be written as colðϕ1ðrÞ; iϕ2ðrÞÞ, where ϕ1;2
are real functions (see the Supplemental Material [23]). To
find other symmetries we distinguish high-symmetry points
of the lattice which can be grouped as symmetric, PΩ ¼ Ω,
or antisymmetric, PΩ ¼ −Ω, with respect to the parity
transformation around these points (we call them α and β
points). We consider modes localized around r ¼ 0 and
select the following positions of the lattice: r0 ¼ ð0; 0Þ for α
points and r0 ¼ ð�π=4;�π=4Þ for β points.
Starting with attractive interactions and α points we find

that in addition to the symmetry α̂3 ¼ â3 [the symmetry
operators for α (β) points are designated as α̂ (β̂); 1̂ is the
identity operator], we find the symmetry transformations
α̂1 ¼ σ3P and α̂2 ¼ PT and verify that f1̂; α̂1; α̂2; α̂3g
constitute a Klein four-group (or Vierergruppe) that is
characterized by the relations α̂iα̂j ¼ α̂jα̂i ¼ α̂k (for all
indexes different). This group property has an interesting
consequence: if a solution obeysmore than one symmetry, it
obeys all the symmetries of the group; i.e., a solution is either
symmetric for a given j: ψ ¼ α̂jψ , or highly symmetric
satisfying ψ ¼ α̂1ψ ¼ α̂2ψ ¼ α̂3ψ . Such highly symmetric
solutions obtained numerically from (1) forμ falling to semi-
infinite gap are shown in Figs. 2(a), 3(a), 3(c).
Further, we separate the atomic density njðrÞ and phase

θjðrÞ of the jth component: ψ j ¼ ½njðrÞ�1=2eiθjðrÞ. In these
terms for α̂1-symmetric solutions θ1ðrÞ ¼ θ1ð−rÞ and

FIG. 1 (color online). Left panel: The first and second bands of
the ZL spectrum vs Bloch momentum k ¼ ðkη; kζÞ at γ ¼ 2.
Lower red (upper blue) arrows indicate the points from which
solitons bifurcate in the case of attractive (repulsive) interactions.
Right panel: Edges of semi-infinite and first finite gaps vs SO
coupling strength. Gaps are shaded, while bands are shown white.
In all cases δ ¼ 6, φ ¼ π=4. At γ ¼ 0 the band between semi-
infinite and first finite gaps is narrow but nonzero: δμ ≈ 0.049.
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θ2ðrÞ ¼ θ2ð−rÞ þ π. Thus, at r ¼ 0 the phase of the second
component has either a singularity or a jump, while its
density vanishes at r ¼ 0; i.e., such a component must
have vortical or multipole structure. If the first component
does not carry central phase singularity, while second
component carries it, one obtains a half-vortex soliton
[Fig. 2(b)]. Multipole structure of second component can
be observed in simplest fundamental soliton in Fig. 2(a).
α̂2-symmetric solutions have antisymmetric phases:
θ1;2ðrÞ ¼ −θ1;2ðrÞ. Such modes can not carry vorticity.
By definition α̂2-symmetric modes are PT symmetric. An
example of such a mode found from Eq. (1) at g < 0 is
shown in Fig. 2(c).
For repulsive interactions the modes centered in α points

can be found in the first finite gap (Fig. 3). The bifurcation
now occurs from maxima of μðkÞ surface as shown by blue
arrows in the left panel of Fig. 1. In two-dimensional
geometry fundamental solitons always bifurcate from the
internal points of the Brillouin zone (see Fig. 1); i.e., they
all feature stripelike structure that is most clearly visible
from stripe-phase distributions in Figs. 2 and 3. In

particular, in Fig. 3(a) and 3(c) the phases θ1;2 take one
of the values, 0 or π (θ1) and�π=2 (θ2), which is consistent
with α̂3 symmetry.
The properties of fundamental and half-vortex solitons in

ZL are summarized in Fig. 4. From the panels (a) and (b)
we observe that while the numbers of atoms grow almost
everywhere as the branches go outwards the gap edges (the
allowed band corresponds to −3.56 < μ < −2.75), the
magnetization M ¼ ðN1 − N2Þ=N starting with zero value
at the edges rapidly achieves saturation meaning that the
relative populations of the components are weakly depen-
dent on N. In the case of fundamental soliton the number of
atoms in the first component always exceeds the number of
atoms in the second component [M > 0 in Fig. 4(a)]. In the
case of half-vortex solution we observe opposite relation:
N2 > N1 [M < 0 in Fig. 4(b)]. While simplest fundamental
solitons are stable almost in the entire existence domain,
stable half-vortex solitons were found only for attractive
interactions below certain critical value of chemical poten-
tial. In Fig. 4(c) we show the dependence of the number of
atoms in the spinor components on the coupling constant
for repulsive interactions: at fixed μ localized modes can be

FIG. 2 (color online). Spinor amplitudes and phases in the
attractive case for γ ¼ 2. For (a) highly symmetric fundamental
soliton with μ ¼ −4.2 (stable almost in the entire existence
domain), (b) α̂1-symmetric half-vortex soliton with μ ¼ −5
(stable for μ < −4.74), and (c) α̂2-symmetric soliton-quadrupole
structure with μ ¼ −5 (stable for the given chemical potential).
The gauge field direction is indicated in the upper panels.

FIG. 3 (color online). Amplitudes and phases in the repulsive
case for γ ¼ 2 and μ ¼ −3 for (a) highly symmetric mode in a
gap (stable almost in the entire existence domain); (b) unstable
α̂2-symmetric half-vortex soliton; and (c) highly symmetric
soliton (stable for a given chemical potential).
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found only in a limited interval of coupling constants. The
imbalance of populations in components is most pro-
nounced near the upper edge of this interval.
While the modes (a) and (b) in Fig. 3 were obtained

for the gauge field directed along the lattice diagonal
(φ ¼ π=4) and preserving the reflection symmetry
η ↔ ζ, the gap soliton in Fig. 3(c) exists in the gauge
field along η-axis, which preserves the symmetry η ↔ −η.
Moreover, fundamental solitons can be obtained for any φ
in contrast to half-vortex solitons [Figs. 2(b) and 3(b)]
which were found only at φ ¼ π=4. When φ decreases from
π=4 to 0, fundamental modes in both attractive and
repulsive SO-BECs exhibit continuous shape transforma-
tions, that is confirmed by smooth dependence of the
number of atoms and magnetization on the field direction
[Fig. 4(d)]. An unexpected result is the weak dependence of
the number of atoms in the fundamental soliton on the field
direction vs more pronounced variations of the magneti-
zation achieving maximum at φ ¼ π=4.
Turning to β points, in addition to β̂3 ¼ â3 symmetry

one finds other two symmetries: β̂1 ¼ iσ1PT and β̂2 ¼
σ2P; f1̂; β̂1; β̂2; β̂3g constitute aKlein four-group. Since now
the coordinate system is centered in the points with the
largest slope of the potential one expects to find solutions
with spatially separated global density maxima in the
components, each located in themaximumof its own lattice.

Under the parity and time symmetry transformations, such
solitons require the inversion of the components, i.e., change
of the internal degree of freedom (charge), and thus can
be characterized as CPT symmetric. The respective CPT
symmetries are provided by the β̂1 and β̂2 operators.
Examples of such stable solitons are shown in Fig. 5 [since
the component phases of β̂j-symmetric modes with j ¼ 1, 2
are uniquely related to each other (see the Supplemental
Material [23]), φ1ðrÞ ¼ ð−1Þj½φ2ð−rÞ − π=2�, we show
only the phase of the first component]. They were found
in a semi-infinite [panels (a)] and first finite gaps [panels (b)]
in attractive and repulsive SO-BECs, respectively.
All solitons considered so far were centered in the lattice

points symmetric with respect to the reflection symmetry.
Meantime the spinor solitons can be also found with centers
in the points with respect to which the lattice potential is
antisymmetric, i.e.,Ω → −Ω under the reflection η ↔ ζ. In
Fig. 5(c) we show an example of a stable β̂1-symmetric
soliton centered in such a lattice point.
We conclude with two remarks. First, the β̂1;2 sym-

metries, involving the pseudo-spin inversion, are broken
when the inter- and intraspecies interactions are not exactly
equal. However even in this case the above classification
of the modes remains valid. This stems from the structural
stability of the modes with respect to variation of the

FIG. 4 (color online). Number of particles (solid curves) and
magnetization (dashed curves) vs μ for fundamental (a) and half-
vortex (b) solitons at γ ¼ 2, φ ¼ π=4 in attractive (subscripts a)
and repulsive (subscripts r) condensates. Circles in (a) [(b)]
correspond to solitons shown in Figs. 2(a) [2(b)] and 3(a) [3(b)].
Black (red) lines show stable (unstable) families. (c) NðγÞ at
φ ¼ π=4, and (d) N andM vs φ at γ ¼ 2 for fundamental solitons
in a repulsive SO-BEC. In (c),(d) μ ¼ −3.2.

FIG. 5 (color online). Amplitudes and phases of fundamental
β̂1-symmetric solitons for (a) μ ¼ −4.2 and g ¼ −1; (b) μ ¼ −3
and g ¼ 1; (c) μ ¼ −4.2 and g ¼ 1. In all cases γ ¼ 2. In (a) and
(b) the distributions were centered at η0 ¼ ζ0 ¼ −π=4, while in
(c) the center is at η0 ¼ π=4, ζ0 ¼ −π=4. In (a) the soliton is
stable and the phases are either −3π=4 or π=4 (the first
component) and −π=4 or 3π=4 (the second component). In
(b) the phases are either −3π=8 or 5π=8 (the first component) and
−7π=4 or π=8 (the second component).
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inter- and intraspecies interactions (see the Supplemental
Material [23]). Even when symmetries β̂1;2 are broken one
can classify solution as branching out from the exactly β̂1;2-
symmetric one, obtained for all interactions equal. Second,
the reported modes can be excited dynamically starting
with Gaussian distributions in only one of spinor compo-
nents, which can be prepared using external parabolic trap.
Removal of the trap and switching on Zeeman lattice lead
to temporal evolution, where spinor solitons emerge spon-
taneously after some transient stage whose duration is
determined by the recoil energy [23].
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