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The band structure of single-layer black phosphorus and the effect of strain are predicted using density
functional theory and tight-binding models. Having determined the localized orbital composition of the
individual bands from first principles, we use the system symmetry to write down the effective low-energy
Hamiltonian at the Γ point. From numerical calculations and arguments based on the crystal structure of
the material, we show that the deformation in the direction normal to the plane can be used to change the
gap size and induce a semiconductor-metal transition.
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Introduction.—Despite the fact that the variety of truly
two-dimensional (2D) materials has been increasing rap-
idly in recent years [1–3], graphene is set apart from the rest
because it contains a single nonmetal atom type. In fact, the
choices for such monotypic systems composed of light
nonmetals are limited. Carbon is the only solid nonmetal
in the second period of the periodic table. The third period
contains two such elements: phosphorus and sulfur.
Phosphorus is a pnictogen and, as such, typically forms
three bonds. Thismeans that it is possible to generate a plane
of phosphorus atoms, where every atomhas three neighbors.
Indeed, there exists a phosphorus allotrope, known as black
phosphorus, in which atoms form two-dimensional layers.
The layers are held together by weak van der Waals force,
similarly to graphite. This allows few-layer black phos-
phorus structures to be fabricated [4,5]. There are two main
traits that set black phosphorus apart from graphite. First,
since P atoms are substantially heavier than C atoms, one
expects that spin-orbit interaction in phosphorus materials
will be stronger. On the structural side, unlike in graphene,
the layers are not perfectly flat; instead, they form a puckered
surface due to the sp3 hybridization.
Previous work dealing with black phosphorus mono-

layers focused on obtaining the band structure using
extended tight-binding modeling [6] and ab initio calcu-
lations [7]. Recently, new studies have appeared dealing
with the mobility, band structure, and device fabrication
[4,5,8]. The exciting results detailed in these papers
illustrate a great potential for practical applications of this
material. In this work, we employ the first principles
calculation in order to construct an effective low-energy
Hamiltonian. Further, we show that uniaxial stress along
the direction perpendicular to the layer can be used to
change the gap size in the system, transforming the material
into a 2D metal.
Structure.—We begin our discussion by looking at the

structure of black phosphorus. As a start, it is helpful
to consider the best-known phosphorus allotrope: white

phosphorus. It is described by the molecular formula P4.
The atoms in the molecule form a tetrahedron with six
single bonds so that every P atom has three bonds with its
neighbors. From the valence shell electron pair repulsion
theory, one can determine that each atom also has a single
lone pair. Three bonds and a lone pair result in the sp3

hybridization of the 3s and 3p atomic orbitals. Typically, for
such a hybridization, bonds and lone pairs stemming from
an atom form angles of about 109.5°. However, because of
the molecular structure of P4, the angles between the bonds
are 60°. This small angle results in a strain that gives rise
to the well-known instability of white phosphorus [9].
Subjecting white phosphorus to high pressure yields

black phosphorus. In this case, three out of six bonds in P4
become broken, resulting in a “tripod”-like shape. Because
of the bond breaking, the angles between the remaining
bonds become larger, making black phosphorus the most
stable allotrope of the element. These flattened P4 blocks
form the black phosphorus layer by having their single-
bonded atoms link up with two atoms from other blocks.
Despite the partial flattening of the four-atom P clusters,
they still retain the sp3 hybridization character of tetra-
phosphorus. Because of this, when linked together, the
clusters do not form a flat layer and instead result in a
puckered structure; see Fig. 1. The illustration shows that
the layer is composed of two different orientations of
flattened P4 structures, denoted by the two colors. These
two orientations are related by a 180° rotation around the y
axis, which runs parallel to the direction of puckering steps.
A single buckle is made up of alternating P4 components.
The rest of the lattice is generated by replicating these
single steps in the x direction.
The hybridization in black phosphorus results in orbitals

that are composed of s and p components. In addition, the
puckering breaks the reflection symmetry in the z and x
directions. This means that black phosphorus is described
by the nonsymmorphicD2h(7) group with the principal axis
running along the puckering steps. Without glide planes
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and screw axes, the monolayer symmetry is described by
the C2h point group. We will use its irreducible represen-
tations later to construct the low-energy Hamiltonian.
Finally, also because of the puckering, a unit cell now
contains four atoms: CT , DT , CB, DB (see Fig. 2). Here, C
and D denote the sublattice; T and B label the top and
bottom of the steps.
First principles calculation.—We use first principles

calculations based on density-functional theory (DFT) to
obtain the band structure of monolayer black phosphorus.
These were performed using the QUANTUM ESPRESSO code
[10]. The core electrons were treated using the projector
augmented wave method [11]. The exchange correlation
energy was described by the generalized gradient approxi-
mation (GGA) using the PBEsol functional [12]. Since
the order of the conduction bands is very sensitive to strain,
this functional was chosen to obtain the accurate structural
parameters [13]. The Kohn-Sham orbitals were expanded
in a plane-wave basis with a cutoff energy of 70 Ry. The
Brillouin zone (BZ) was sampled using 10 × 8 points
following the scheme proposed by Monkhorst-Pack [14].
Black phosphorus monolayer is a direct band gap or

nearly direct band gap semiconductor (Fig. 3). The bottom

of the conduction band is at Γ (Fig. 3). The valence band
top is also close to the Γ point, and it is nearly dispersion-
less along the y direction. The first principles calculations
place its maximum less than 0.06 × 2π=ay away from Γ,
where ay is the lattice parameter along the y direction
(see the Supplemental Material [13]). The band gap energy
obtained by density functional theory at the GGA level
is 0.7 eV.
Similar to the bulk material, the top of the valence band

has predominantly pz character whereas the lowest con-
duction bands at Γ have mixed px and pz character. The
conduction band that increases in energy in the direction
X to Γ, i.e., the fourth lowest unoccupied band, has py
character. All those four conduction bands are very close in
energy, and as discussed in the Supplemental Material [13],
their relative energy order is very sensitive to deformation
along the x direction.
Low-energy Hamiltonian.—Having obtained the

band structure using ab initio calculations, we now con-
struct a simplified model that describes the bands around
the Γ point. Since the valence band maximum is very
close to Γ both in the reciprocal space and in energy, we
assume the approximation that the band gap is direct.
To construct the model, we employ the k · p approxima-
tion. In this case, the perturbing Hamiltonian is given
by H1 ¼ ℏðkxp̂x þ kyp̂yÞ=me. The true eigenstates of the
system at the Γ point are either even or odd with respect
to σh reflection and can written as sums over irreducible
representations of the C2h point group

jΨe
i i ¼ jAi

gi þ jBi
ui; jΨo

i i ¼ jAi
ui þ jBi

gi; (1)

where Au=g and Bu=g are the irreducible representations.
Using the symmetry argument, we show how the different
bands mix through the perturbing Hamiltonian by rewriting
the matrix element hΨs

i jp̂x=yjΨs0
j i as

x y

z

FIG. 1 (color online). P-black monolayer lattice structure in
three dimensions. The colors represent two different orientations
of the flattened P4 clusters forming the layer. All bonds are
identical, and the colors are used only as a guide to make the
symmetry more apparent.

FIG. 2 (color online). Projection of the P-black lattice onto x-y
plane. Filled circles correspond to atoms at the top of the buckles,
and empty circles are at the bottom. Different colors represent
different sublattices. Solid lines are in-plane bonds; the dashed one
is out of plane. The length of in-plane bonds is a, and the length
of the projection of the out-of-plane ones onto the plane is Sa.

FIG. 3 (color online). First principles band structure of
monolayer black phosphorus: (a) diagram identifying the high
symmetry points of the Brillouin zone, (b) PBEsol band structure,
and (c) detail of the band structure near the Γ point.
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hΨs
i jσ†hσhp̂x=yσ

†
hσhjΨs0

j i ¼ �ss0hΨs
i jp̂x=yjΨs0

j i; (2)

where s, s0 ¼ �1 are the σh symmetry indices. This result
tells us that the matrix element for p̂x (p̂y) is nonzero only
if the states have the same (different) σh symmetry.
According to the first principles calculations, the valence

and the conduction bands are even in σh. Thus, to the
lowest order, the effective low-energy Hamiltonian is

H0
eff ¼

�
Ec γ1kx
γ�1kx Ev

�
; (3)

where γ1 ¼ ℏhΨcjp̂xjΨvi=me. Note that without including
the rest of the bands, Eq. (3) describes a one-dimensional
system. The lack of y dependence agrees with the weak
dispersion in the y direction close to the Γ point seen in
the numerical results. The rest of the Heff is obtained by
including the remaining bands and using the Löwdin
partitioning [15]. The leading order correction to the
effective Hamiltonian is given by

ðHcorrÞmm0 ¼
X
l

ðH1ÞmlðH1Þlm0

2

�
1

Em − El
þ 1

Em0 − El

�
;

(4)

where the summation goes over the remaining bands. The
diagonal elements of the correction are

ðHcorrÞmm ¼
X
l

ðγxmlÞ2k2x þ ðγymlÞ2k2y
Em − El

¼ ηmk2x þ νmk2y:

(5)

This result captures the mass difference between the
conduction and the valence bands as well as the x̂ and ŷ
directions.
Finally, the off-diagonal elements are

ðHcorrÞcv ¼ αk2x þ βk2y; (6)

α ¼
X

l;even σh

γxclγ
x
vl

2

�
1

Ec − El
þ 1

Ev − El

�
; (7)

β ¼
X

l;odd σh

γyclγ
y
vl

2

�
1

Ec − El
þ 1

Ev − El

�
; (8)

resulting in

Heff ¼
�
Ec þ ηck2x þ νck2yγ1kx þ αk2x þ βk2y

γ�1kx þ αk2x þ βk2yEv þ ηvk2x þ νvk2y

�
: (9)

From this, one can obtain the effective masses close to the Γ
point

mx
c=v ¼

ℏ2

2
�
� jγ1j2

Δ þ ηc=v
� ; my

c=v ¼
ℏ2

2νc=v
: (10)

Close to the Γ point, we retain only the leading coupling
terms and set α ¼ 0. We plot a fit for the conduction and
valence bands in Fig. 4.
Lattice deformation.—Application of uniaxial stress in

the direction perpendicular to the monolayer modifies the
band structure. It is known that the symmetry breaking in
general lifts degeneracies and opens gaps. In this system,
however, vertical compression does not break symmetry.
Rather, as the thickness decreases, the system moves
towards the more symmetric state where the T and B
subsystems become identical. This will result in the change
of the gap size and, for compressive strain, induce a
semiconductor-metal transition.
We show in the Supplemental Material [13] that at the Γ

point the Hamiltonian can be separated into four families

Hnm ¼ Σþ nPZ þm½M þ nKCZ�L: (11)

Σ is the on-site energy matrix, P is the hopping matrix
between T and B subsystems of the same sublattice (C and
D), M describes hopping between CT and DT , and KC
connects CT toDB. Z is a diagonal matrix with (1, 1, 1, −1),
and L is a diagonal matrix with (−1, 1, 1, 1). Finally,
m; n ¼ �1. States with m ¼ 1 are antisymmetric in s
orbitals for atoms on the same level (T andB) and symmetric
in other orbitals. For n ¼ 1, the T and B atoms of the
same sublattice are symmetric in s, px, and py and
antisymmetric in pz.
To understand how the deformation affects the gap size,

it is helpful to consider two limiting cases: a completely
flattened layer and a layer where the bonds connecting T
and B subsystems are perpendicular to them (maximum
puckering). In the first case, pz orbitals become orthogonal

FIG. 4 (color online). Fitting of the Heff results to the ab initio
band structure. For this fit, γ1 ¼ 6.85w=π eVm, ηv ¼−3w2=π2 eV m2, νc¼5w2=π2 eVm2, and β¼7w2=π2 eVm2,
where w ≈ 2.23 × 10−10 m and π=w is the BZ width in the x̂
direction. The rest of the parameters are set to zero. Note that this
fit gives a direct gap.
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to the rest. In addition, T=B symmetry is restored and
n ¼ −1, yielding the following energies at the Γ point

Eflat ¼ Σz þmMz: (12)

Σz is the energy arising from the overlap of the single
sublattice (C or D) pz orbitals, and Mz is the sum over all
the π bonds between the sublattices. Since the hopping
element for π bonds is negative, Mz < 0. This means that
the state where all the pz orbitals are aligned in the same
direction have the energy E ¼ Σz þMz, smaller than the
state where the sublattices are antisymmetric in pz
(E ¼ Σz −Mz). The reason for this is that the symmetric
arrangements results in bonding, which is lower in energy
than the antibonding antisymmetric arrangement. As will
be shown below, flattening leads to an in-plane lattice
deformation, and themonolayer approaches a square lattice.
This, however, does not change our argument as the parallel
arrangement of pz orbitals is still lower in energy compared
to the antiparallel one.
Let us now move on to the maximum-puckering case.

Here, neighboringCT=B-DB=T atoms are aligned along the ẑ
axis. This means that symmetrically aligned neighboring pz
orbitals form an antibonding σ bond instead of the bonding
π bond. Similarly, antisymmetric neighbors form a σ bond
instead of the π antibond. In fact, the general nature of
CT=B-DB=T interaction becomes more bonding for the
antisymmetric case and more antibonding for the symmet-
ric case as one goes from a flat to a puckered system. If the
σ bond energy is substantially larger than that of the π bond,
puckering can actually cause the previously antibonding
arrangement to become bonding and vice versa. In fact,
according to our numerical calculations, the lowest con-
duction band is described by H−1;−1, see Eq. (11), corre-
sponding to the fully symmetric pz orientation. On the
other hand, the highest valence band has n ¼ −1, m ¼ 1,
which is antisymmetric. Clearly, the ordering of the bands
is opposite to what one finds in a flat layer. This means
that layer compression leads to the gap reduction and an
eventual band crossing.
To confirm this conclusion, we modeled the strained

layers using density functional theory. The monolayer unit
cell and atomic positions were relaxed subject to the
constraint z ¼ �h for all atoms. Compression (h < h0,
where 2h0 is the thickness of the free layer) results in an
in-plane expansion of the unit cell. Until h=h0 ∼ 0.4, the
bonding structure of black phosphorus remains, and the
structure of the strained material approaches that of a
puckered graphene layer [Figs. 5(a) and 5(b)]. Below
h=h0 ∼ 0.2, however, there is a transformation into a square
lattice [Fig. 5(c)].
With regard to the band structure, the valley at Γ, marked

A in Fig. 5(a), first raises while the valley B becomes lower
in energy. Hence, at h=h0 ¼ 0.94, the material is an
indirect-gap semiconductor. With further compression, a

new valley appears at the Y point [marked C in Fig. 5(b)].
For h=h0 ∼ 0.75, this one eventually becomes as low as
the valence band top near Γ, marking the transition from
indirect band gap semiconductor to metallic. Figure 5(d)
shows the variation of the band gap energy, until a point
where the conduction band minimum has descended below
the valence band maximum. The uniaxial stress that is
necessary to impose in order to achieve the semiconductor
to metal transition is estimated to be about 24 GPa, from the
Hellman-Feynman forces [10].
In a narrow range of h=h0 between 0.75 and 0.70, the

material has a low density of states at the Fermi level
and can be considered a semimetal. If compression is
increased, the original valence bands and conduction bands
finally cross.

(a)

(d)

(b) (c)

FIG. 5 (color online). [(a)—(c)] Band structure of black phos-
phorusmonolayer under uniaxial compression along the z direction,
for three values of the imposed height h=h0 (continuous line),
along with the band structure of the pristine material (dotted lines).
The respective relaxed structure is also depicted in top and side
views. (d) Band gap as a function of the height. The original layer
thickness is 2h0.
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Below h=h0 ∼ 0.2 where the lattice is already nearly
square, the resemblance of the bands to those of the original
material is completely lost [Fig. 5(c)].
Conclusions.—Using ab initio calculations, we have

obtained the band structure of single-layer black phospho-
rus. The results show that this material is a direct band gap
or nearly direct band gap semiconductor with a strongly
anisotropic dispersion in the vicinity of the gap. From
the first principles calculation, we also obtain the locali-
zed orbital composition of the bands around the Γ point,
which allows us to construct an effective Hamiltonian
that describes the highest valence and the lowest conduc-
tion bands.
On the basis of the lattice structure of black phosphorus,

we use a general tight-binding description to predict the
closing of the gap with compression in the transverse
direction. To support this prediction, we use DFT to show
that upon moderate deformation, the system goes through a
semiconductor-metal transition. The energy ordering of
the conduction band valleys changes with strain in such a
way that it is possible to switch from nearly direct band
gap semiconductor to indirect semiconductor, semimetal,
and metal with the compression along only one direction.
Finally, under severe compression, the monolayer appro-
aches a plane square lattice configuration. Such rich variety
of electronic and structural transformations makes P-black
a unique material for fundamental physics studies.

A. S. R. acknowledges DOE Grant No. DE-FG02-
08ER46512 and ONR Grant No. MURI N00014-09-1-
1063. A. H. C. N. acknowledges NRF-CRP Grant “Novel
2D materials with tailored properties: beyond graphene”
(No. R-144-000-295-281). The first principles calculations
were carried out on the GRC high-performance computing
facilities.

[1] N. Alem, R. Erni, C. Kisielowski, M. D. Rossell,
W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).

[2] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini,
B. Ealet, and B. Aufray, Appl. Phys. Lett. 97, 223109
(2010).

[3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and
M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

[4] H. Liu, A. T. Neal, Z. Zhu, D. Tománek, and P. D. Ye,
arXiv:1401.4133.

[5] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng,
X. H. Chen, and Y. Zhang, arXiv:1401.4117.

[6] Y. Takao and A. Morita, Physica B+C (Amsterdam) 105, 93
(1981).

[7] Y. Du, C. Ouyang, S. Shi, and M. Lei, J. Appl. Phys. 107,
093718 (2010).

[8] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji,
arXiv:1401.5045.

[9] N. N. Greenwood and A. Earnshaw, Chemistry of the
Elements (Butterworth Heinemann, Oxford, 1998).

[10] P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502
(2009).

[11] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[12] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,

G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke,
Phys. Rev. Lett. 100, 136406 (2008).

[13] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.176801 for details,
which includes Refs. [16–27].

[14] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188
(1976).

[15] R. Winkler, Spin-Orbit Coupling Effects in Two-
Dimensional Electron and Hole Systems (Springer-Verlag,
Berlin, Heidelberg, 2003).

[16] Ø. Prytz and E. Flage-Larsen, J. Phys. Condens. Matter 22,
015502 (2010).

[17] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[18] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
[19] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.

118, 8207 (2003).
[20] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and

D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
[21] L. Cartz, S. R. Srinivasa, R. J. Riedner, J. D. Jorgensen, and

T. G. Worlton, J. Chem. Phys. 71, 1718 (1979).
[22] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler,

Int. J. Quantum Chem. 65, 453 (1997).
[23] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and

J. M. Soler, Phys. Status Solidi B 215, 809 (1999).
[24] O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979

(1989).
[25] O. F. Sankey, D. J. Niklewski, D. A. Drabold, and J. D. Dow,

Phys. Rev. B 41, 12750 (1990).
[26] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[27] L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).

PRL 112, 176801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
2 MAY 2014

176801-5

http://dx.doi.org/10.1103/PhysRevB.80.155425
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1063/1.3524215
http://dx.doi.org/10.1038/nnano.2012.193
http://arXiv.org/abs/1401.4133
http://arXiv.org/abs/1401.4117
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1063/1.3386509
http://dx.doi.org/10.1063/1.3386509
http://arXiv.org/abs/1401.5045
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1103/PhysRevB.82.081101
http://dx.doi.org/10.1063/1.438523
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5%3C453::AID-QUA9%3E3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1521-3951(199909)215:1%3C809::AID-PSSB809%3E3.0.CO;2-0
http://dx.doi.org/10.1103/PhysRevB.40.3979
http://dx.doi.org/10.1103/PhysRevB.40.3979
http://dx.doi.org/10.1103/PhysRevB.41.12750
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevLett.48.1425

