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In many complex systems a continuous input of energy over time can be suddenly relaxed in the form of
avalanches. Conventional avalanche models disregard the possibility of internal dynamical effects in the
interavalanche periods, and thus miss basic features observed in some real systems. We address this issue
by studying a model with viscoelastic relaxation, showing how coherent oscillations of the stress field can
emerge spontaneously. Remarkably, these oscillations generate avalanche patterns that are similar to those
observed in seismic phenomena.
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The driven dynamics of heterogeneous systems often
proceeds by random jumps called avalanches, which dis-
play scale-free statistics. This critical out-of-equilibrium
behavior emerges from the competition between internal
elastic interactions and interactions with heterogeneities,
and is understood in the framework of the depinning
transition [1,2]. Remarkably, one can often disregard the
precise details of the microscopic dynamics when consid-
ering the large scale behavior. As a result, various phenom-
ena such as Barkhausen noise in ferromagnets [3–5], crack
propagation in brittle materials [6–8] or wetting fronts
moving on rough substrates [9–11] may display similar
avalanche statistics.
In this description of avalanches a trivial dynamics in the

interavalanche periods is usually assumed [1,12]. However,
the inclusion of viscoelastic effects with their own char-
acteristic time scales brings about novel dynamical fea-
tures. The existence of this kind of relaxation may have
drastic consequences on the macroscopic behavior of the
system, as in the context of friction where it generates the
time increase of static friction during the contact between
two surfaces at rest [13,14]. Here we show how these
relaxation processes generically induce a novel avalanche
dynamics characterized by new critical exponents and
bursts of aftershocks strongly correlated in time and space.
Because of its simplicity, the model allows for analytic
treatment in the mean field, and for extensive numerical
simulations in finite dimensions. Our main observations are
twofold. First, in the mean field the time scale of visco-
elastic relaxation is associated with a dynamical instability,
which we prove to be responsible for periodic oscillations
of the stress in the entire system. This instability, named
avalanche oscillator, was observed in numerical simula-
tions and experiments of compression of Nickel micro-
crystals [15]. Note that viscoelastic interactions are also at
the root of the hysteretic depinning emerging in mean field

periodic systems like vortex lattice or charge density waves
[16,17]. Second, in two dimensions the global oscillations
found in the mean field remain coherent only on small
regions. In each region the oscillations of the local stress
have roughly the same amplitude and period but different
phases, so that at a given time the stress map has a terraced
structure.
We claim that the relaxation processes studied in our

model are essential to capture the basic features of seismic
dynamics. In particular, the viscoelastic time scale is the
one involved in the aftershock phenomenon [18–20].
Moreover the oscillations of the stress field explain the
quasiperiodic time recurrence of earthquakes that emerges
from the data analysis of the seismic activity in some
geographical areas [21,22]. Finally we show that in two
dimensions, viscoelastic relaxation produces an increase
in the exponent of the avalanche size distribution
compatible with the Gutenberg-Richter law, and the
aftershock spatial correlations obtained have strong simi-
larities with the so-called migration effect observed in real
earthquakes [23].
The models.—Our model with relaxation is constructed

upon the paradigmatic model of avalanche dynamics,
describing the depinning of a d-dimensional elastic inter-
face moving inside a (dþ 1)-dimensional space [1]. In this
model, the interface consists of a collection of blocks [see
Fig. 1(a)] obeying the equation of motion,

η∂thi ¼ k0ðw − hiÞ þ fdisi ðhiÞ þ k1Δhi (1)

where (i, hi) is the (dþ 1)-dimensional coordinate of the
block and η is the viscosity of the medium. Each block feels
elastic interactions via the (discrete) Laplacian term
k1ðΔhÞi ¼ k1

P
hijiðhj − hiÞ (summation is restricted to

nearest neighbors of i), disorder via fdisi ðhiÞ and is driven
towards the position w ¼ V0t via springs of elasticity k0.
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The force per unit area applied by the drive, namely, the
stress is given by σ ¼ k0ðw − h̄Þ, where h̄ ¼ ð1=NÞP

i
hi is

the mean value of interface height (N ¼ Ld). The slow
increase of w over time induces an augmentation of the
pulling force on each block. As a response, blocks typically
slightly adjust their positions, but sometimes a block
reaches a mechanically unstable state and moves far away
from its position to a new local energy minimum. This
can in turn destabilize neighboring blocks, thus triggering
an avalanche event that we characterize by its size
S ¼ Nðh̄after − h̄beforeÞ, which is simply the volume swept
by the interface during the event. In Fig. 1(c) we show the
sizes S of a sequence of avalanches obtained by driving w
quasistatically (V0 ¼ 0þ). The sequence displays an
almost Poissonian behavior, in the sense that both the
sizes and the time occurrences of the events are almost
uncorrelated variables. Moreover the stress is constant in
time, with fluctuations due to finite system size.

Our modified model consists in replacing springs k1 by
viscoelastic elements, built using springs and dashpots as
depicted in Fig. 1(b). Dynamical equations become

η∂thi ¼ k0ðw − hiÞ þ fdisi ðhiÞ þ k1Δhi þ k2ðΔhi − uiÞ;
ηu∂tui ¼ k2ðΔhi − uiÞ; (2)

where the auxiliary variables ui depend on the elongation
of the neighboring dashpots: in one dimension this variable
reads ui ¼ ðϕi − hiÞ þ ðhi−1 − ϕi−1Þ (see the Supplemental
Material [24]). The relaxation constant ηu sets a new
characteristic time τu ¼ ηu=k2, to be compared with the
two scales: (i) τD ¼ z̄=V0 which accounts for the slow
increase of the external drive w (where z̄ is the typical
microscopic disorder length scale, defined later),
(ii) τ ¼ η=max½k0; k1; k2�, which is the response time of
the h variables. Essentially, “main” avalanches are triggered
by the drive through k0, whereas relaxation (via k2, ηu)
triggers additional events on a time scale of order τu: the
aftershocks.
In our analysis, we assume that the three scales are well

separated, namely, τ ≪ τu ≪ τD (i.e., η ≪ ηu). Hence, on
the time scale τ the ui’s are constant in time and the
dynamics is exactly the same as for the depinning model
with elastic constant k1 þ k2. However, after an avalanche,
and in a time scale τu ≫ τ, hi’s are pinned (due to the
narrow wells approximation, see below) and ui’s relax
exponentially,

uiðtÞ ¼ Δhi þ ðuiðt0Þ − ΔhiÞe−ðt−t0Þk2=ηu ; ∀ i; (3)

where t0 is the time at which the last avalanche occurred.
The effect of relaxation is to suppress the term k2ðΔhi − uiÞ
in Eq. (2), so that some blocks may become unstable. This
triggers secondary avalanches in the system, identified with
aftershocks in the seismic context. Aftershocks occur
without any additional driving: the ensemble of events
that occur at a given w will be called a cluster [Fig. 1(d)].
When ui ¼ ðΔhÞi ∀ i, the system is fully relaxed and new
instabilities can only be triggered by an increase of w. Note
that the fully relaxed configuration corresponds to a stable
configuration of the depinning model with the same
disorder realization and elastic constants k0, k1.
We mostly have in mind the d ¼ 2 case, which is the one

realized in the seismic context. We consider local elastic
interactions for implementation convenience. Realistic long
range interactions within the faults (induced by the three-
dimensional nature of the plates) may have effects on the
results we present, that are difficult to assess without a full
numerical simulation. This remains as a prospect for
future work.
The narrow wells approximation.—To efficiently study

Eqs. (1,2), we adopt the so-called narrow wells approxi-
mation. In this scheme, disorder is modeled as a collection
of narrow pinning wells representing impurities [see

(b)

(c)(a)

(d)

(e)

FIG. 1. Sketch of the models for d ¼ 1. (a) Conventional
depinning model: disorder and elastic interactions acting on
the blocks, located in hi, hiþ1, etc. The disordered force derives
from the pinning potential (gray): fdisi ¼ −∂Edis

i ðhiÞ=∂hi. (b) De-
pinning with relaxation: we introduce dashpots with relaxation
constant ηu and springs of stiffness k2. Right: numerical results
showing sequences of avalanches sizes S (dots) and stress
(continuous lines) as a function of drive w for: the elastic
depinning model in d ¼ 2 (c), the depinning with relaxation in
d ¼ 2 (d) (dashed and dotted lines correspond to local stress in
two distant regions), and in the mean field (e).
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Fig. 1(a)], with spacings z, distributed as gðzÞ and with
average z̄ ¼ R

∞
0 zgðzÞdz. The maximum value of the

pinning force at each well is denoted fth (see the
Supplemental Material [24]). Thanks to this choice,
the system state can be reduced to a variable δi. In the
depinning model

δi ≡ fthi − k0ðw − hiÞ − k1Δhi: (4)

As soon as δi ≤ 0, this site becomes unstable: an avalanche
is triggered. The avalanche evolution translates into simple
rules for δi’s. When δi > 0,∀ i, all blocks are stable and the
avalanche is exhausted. Driving then follows until a new
event is triggered.
In our model, δi’s read

δi ¼ fthi − k0ðw − hiÞ − k1Δhi − k2ðΔhi − uiÞ: (5)

The dynamics proceeds as before, with ui’s kept constant
during avalanches. When the avalanche is exhausted, a
slow relaxation of ui takes place [Eq. (2)]. This evolution
can decrease δi’s and thus trigger aftershocks.
Mean-field analysis.—We analyze the mean field, fully

connected model, which corresponds to replacing Δhi with
h̄ − hi in Eqs. (4), (5). In this case, all sites are equivalent
and the δi’s are independent and identically distributed
variables, characterized by the probability distribution
PwðδÞ which in general depends on the initial condition
P0ðδÞ and on w. In the Supplemental Material [24], we
obtain the evolution of PwðδÞ under an infinitesimal
increase in w for both models, for fthi ¼ const.
For the elastic depinning model, we show that this

evolution has a fixed point reached within a finite increase
in w, at which PwðδÞ is given by the function

Qðδ; k1Þ ¼
1 −Gðδ=ðk0 þ k1ÞÞ

z̄ðk0 þ k1Þ
; (6)

whereGðzÞ≡ R
z
0 dz

0gðz0Þ. This indicates that the large time
dynamics is stationary, and that the applied stress in the
system is constant in time: σðk1Þ≡ fth − δ̄ðk1Þ. Further
analysis shows that as long as Pwð0Þ < ðz̄k1Þ−1 the system
displays avalanches bounded by a system-size independent
cutoff: Smax ¼ ½1 − Pwð0Þz̄k1�−2. For example, at the fixed
point (6) we have Pwð0Þ ¼ Qð0; k1Þ ¼ 1=z̄ðk0 þ k1Þ, so
that Smax ¼ ð1þ k1=k0Þ2. However if Pwð0Þ ≥ ðz̄k1Þ−1 the
system becomes unstable, with a global event, that involves
a finite fraction of the system.
For the model with relaxation, the evolution of PwðδÞ is

nonstationary and displays oscillations in time. Under a
small increase in w, two dynamical regimes are observed.
On short times (t≃ τ), sites that become unstable move
following the rules of a rigid elastic interface, with stiffness
k1 þ k2. On longer times (t≃ τu), during relaxation, the
interface becomes more flexible (stiffness k1), thus

evolving towards the fixed point Qðδ; k1Þ (stages 1 and
2 in Fig. 2). However, when Pwð0Þ becomes larger than
1=z̄ðk1 þ k2Þ, the rigid interface is unstable so that a single
global avalanche drives PwðδÞ to the rigid fixed point
Qðδ; k1 þ k2Þ (stage 3 in Fig. 2). Finally, this state is altered
by relaxation and a new cycle starts (stage 4).
Note that cyclic behavior is independent of the details of

the mean field model: e.g., Fig. 1(e) corresponds to the case
of randomly distributed thresholds fthi . The avalanche
dynamics is different and displays aftershocks, but global
events and stress oscillations are also present.
A similar viscoelastic model (with k1 ¼ 0, periodic

disorder and under constant force F) was originally
introduced [16,17,25] to model the hysteretic depinning
observed in vortex lattices and charge density waves. In the
fully connected approximation a self-consistent calculation
pointed out that the average velocity is multivalued,
yielding hysteretic behavior in a wide range of external
stress. This hysteresis echoes with the oscillations in Fig. 2.
Yet, in two dimensions, we see that constant velocity
driving produces stress distributions that are not uniform,
nor constant, and we get qualitative new results that were
not obtained in the constant applied force case studied in
Refs. [16,17,25].
Two-dimensional results.—For d ¼ 2 we must rely on

the numerical implementation of Eqs. (5), (3) via an
efficient method originally developed in Ref. [26] (see
the Supplemental Material [24]). In Fig. 1(d), we see a clear
distribution of events in clusters of main shocks and
aftershocks, as in actual seismicity (where, indeed, any

(a)

(c)

(b)

FIG. 2 (color online). Evolution of PðδÞ [(a) and (b), solid
line] and of the stress σ ¼ k0ðw − h̄Þ (c) computed from direct
integration of the evolution equations. (1) driving without any
avalanche, linearly increasing stress; (2) driving with elastic-
depinning avalanches, slower stress increase. (3) global event:
PðδÞ collapses to the depinning fixed point Qðδ; k1 þ k2Þ (lower
dashed curve) and the stress drops to σðk1 þ k2Þ (lower dashed
line). (4) relaxation closes the cycle back to stage (1) without
altering average stress.
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single cluster spans a finite w interval, due to the incom-
plete separation of time scales). The periodicity of the mean
field [Fig. 1(e)] has now disappeared.
Nevertheless, a careful analysis of the d ¼ 2 model

shows an interesting reminiscence of the mean field
behavior. In Fig. 3 we compute for each cluster the local
stress restricted to the cluster area, just before (σB) and just
after (σA) it takes place (the same analysis for events instead
of clusters yields the same results). Small clusters show
broad distributions of σB and σA, similar to what would be
observed for the depinning case. However, for large clusters
both distributions become very narrow: σB sets to a value
that we denote σmax, and σA sets to σmin. This is the
fingerprint of the mean field behavior, suggesting a large
scale description of the d ¼ 2 interface as a terraced
structure. Indeed, we observe (Fig. 4) that different parts
of the system have different values of the stress, which
range from σmin to σmax. In analogy with the mean field,
when the stress of a region reaches a value ∼σmax, it gets
destabilized and the whole region collapses to σmin. In fact
the evolution of the local stress associated with a small
patch of the interface is nonstationary, and shows an almost
periodic oscillation between σmin and σmax [Fig. 1(d),
dashed and dotted lines]. However this oscillation is not
synchronized among different patches, so the system does
not display a global oscillation. It is remarkable that the
width of the distribution of the local stress (∼σmax − σmin)
remains finite when k0 → 0, while in the depinning model
[27], it vanishes as k1−ζ=20 for very small k0 (ζ is the
roughness exponent of the interface which is found to be
smaller than 2). Moreover our model supports the idea that
seismic activity in some geographical regions displays
quasiperiodicity (the so-called seismic cycle [19]). This
periodicity was recently studied in the context of micro-
crystals deformation [15], where it was named avalanche
oscillator. Similar kinds of oscillations were also observed
in models with relaxation [27], granular materials [28],
and molecular dynamics of viscoelastic disordered
systems [29].

A second important feature is the spatial distribution of
aftershocks in a given cluster (see Fig. 4). After a main
shock, many aftershocks follow, extending the slip area.
The small ones (not indicated) are rather uniformly
distributed inside the slip region; while the epicenters of
the large ones typically occur at the border, extending the
slip region. Field observations report this effect as “after-
shock migration” [23].
As a third point, we discuss the size distribution of the

avalanches in 2D, presented in Fig. 2 of the Supplemental
Material [24]. We find a consistent power law decay in all
of the ranges that we have been able to explore (at least
in a size range of 107) with an anomalous exponent
κ ≃ 1.7–1.8. This is quite remarkable, given that in all
conventional avalanche models like depinning or directed
percolation, this exponent is always smaller than 1.5, which
corresponds to the mean field limit [30,31]. In particular in
the 2D depinning case one measures κ ≃ 1.27 [32]. Our
result can be compared with the value for actual earth-
quakes where κ values in the range≃1.7� 0.2 are reported
[33]. However, since we do not consider realistic long range
elastic interactions, this coincidence has to be taken with
caution. We also note that a justification for the value of the
Gutenberg-Richter exponent has been given recently using
a forest fire model analogy [34]. It is worth mentioning that
arguments in Ref. [34] build upon a model that has a

FIG. 3 (color online). The local stress restricted to the cluster
area, just before (up, σB) and just after (bottom, σA) it takes place,
as a function of the cluster size SC. Thus, in, e.g., a compression
experiment, one expects the average local variation of stress to
vanish (with undefined values of σB;A) for small avalanches, and
to saturate to a constant (nonzero) value (with well-defined values
for σB;A) for large avalanches.

FIG. 4 (color online). Stress map in d ¼ 2. Colors indicate
stress levels, from high (red) to low (blue). Upper left: stress map
just before a large event, with the unstable region highlighted by a
dashed line. From left to right and top to bottom: expansion of the
affected area is seen to mainly spread (black arrows) around the
initial main shock and the subsequent aftershocks (small crosses).
Affected regions have low chance to witness new large events,
due to the low value of the local stress.
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terraced structure of the interface compatible with the one
we find here.
Conclusions.—Internal relaxation plays a crucial role in

the dynamics of sliding objects, and becomes particularly
important at large scales, relevant to seismic phenomena.
The dynamics of our model shows a strong tendency to
become nonstationary. This tendency is manifest in the
mean field, where sliding proceeds as a sequence of global
and periodic stick slips. In d ¼ 2, we provide numerical
evidence that periodic stick slips occur locally, without
global synchronization across the system. There, our
predictions mainly deal with spatial properties of events,
thus demanding high spatial resolution in experiments.
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