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Dynamical systems with complex delayed interactions arise commonly when propagation times are
significant, yielding complicated oscillatory instabilities. In this Letter, we introduce a class of systems with
multiple, hierarchically long time delays, and using a suitable space-time representation we uncover
features otherwise hidden in their temporal dynamics. The behavior in the case of two delays is shown to
“encode” two-dimensional spiral defects and defects turbulence. A multiple scale analysis sets the
equivalence to a complex Ginzburg-Landau equation, and a novel criterium for the attainment of the long-
delay regime is introduced. We also demonstrate this phenomenon for a semiconductor laser with two
delayed optical feedbacks.
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Systems with time delays are common in many fields,
including optics (e.g., a laser with feedback [1–4]), vehicle
systems [5], neural networks [6], information processing
[7], and many others [8]. A finite propagation velocity of
the information introduces in such systems a new relevant
scale, which is comparable or higher than the intrinsic time
scales. It has been shown that the complexity of such
systems, e.g., the dimension of attractors, is finite and it
grows linearly with time delay [9]; moreover, the spectrum
of Lyapunov exponents approaches a continuous limit for a
long delay [10–12]. As a result, in this case essentially
high-dimensional phenomena can occur such as spatiotem-
poral chaos [13], square waves [8], Eckhaus destabilization
[14], or coarsening [3]. In the above mentioned situations,
the system involves one long delay, which can be inter-
preted as the size of a one-dimensional, spatially extended
system [13,15]. This approach has proven to be instru-
mental in explaining new phenomena in systems with time
delays [16,17].
In this Letter, we show that many new challenging

problems arise when a system is subject to several delayed
feedbacks acting on different scales. In contrast to the
single delay situation, essentially new phenomena occur,
related to higher spatial dimensions involved in the
dynamics, such as spirals or defect turbulence. As an
illustration, we consider a specific physical system, namely,
a model of a semiconductor laser with two optical
feedbacks.
A simple paradigmatic setup for the multiple delays case

is the following system:

_z ¼ azþ bzτ1 þ czτ2 þ dzjzj2: (1)

Equation (1) describes a very general situation: the inter-
play of the oscillatory instability (Hopf bifurcation) and
two delayed feedbacks zτi ¼ zðt − τiÞ, which we consider

acting on different time scales 1 ≪ τ1 ≪ τ2. The variable
zðtÞ is complex, and the parameters a, b, and c determine
the instantaneous τ1-and τ2-feedback rates, respectively.
The instantaneous part of the system (without delayed
feedback) is known as the normal form for the Hopf
bifurcation.
The following basic questions arise: What kind of new

phenomena can be observed in systems with several
delayed feedbacks? Can one relate the dynamics of such
systems to spatially extended systems with several spatial
dimensions? In the case of positive answer, under which
conditions? Is it possible to observe such essentially 2D
phenomena as, e.g., spiral waves in purely temporal delay
systems, Eq. (1), which obey the causality principle with
respect to the time? In this Letter, we address the above
questions. In particular, we show that such inherently 2D
patterns as spiral defects or defect turbulence [18] are
typical behaviors of the system in Eq. (1). Moreover, they
can be generically found in a semiconductor laser model
with two optical feedbacks.
We start with numerical examples. Figures 1 and 2 show

solutions of Eq. (1) for two different parameter choices.
The time series in Figs. 1(a) and 2(a) exhibit oscillations on
different time scales related approximately to the delay
times. However, an appropriate spatiotemporal representa-
tion of the data [see e.g., Figs. 1(b)–1(c) and 2(b)–2(c)]
reveals clearly the nature of the dynamical behaviors. More
details on the appropriate spatiotemporal representation of
these purely temporal data will be given later, but one can
readily observe that the first case corresponds to a (frozen)
spiral (FS) defects solution, see Figs. 1(b) and 1(c). The
positions of the two coexisting spiral defects are shown by
the dots, where the level lines for the phase meet.
Consequently, the phase is not defined there and jzj ¼ 0.
The solution shown in Fig. 2 corresponds instead to the
defect turbulence (DT) regime. One can observe that the
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modulation of the amplitude jzðtÞj starts to approach the
zero level in a randomlike manner. In this case, the
corresponding spatial representation [see Figs. 2(b) and
2(c)] reveals DT, i.e., the nonregular motions of the spiral
defects. The plots correspond to snapshots in time;
the videos in the Supplemental Material [19] show the
temporal dynamics of those patterns.
In the following, we explain why the observed behaviors

are typical and show how to relate the dynamics of Eq. (1)
to the complex Ginzburg-Landau equation on a 2D spatial
domain. In particular, we show that the function zðtÞ on the
time interval of the length τ2 corresponds to a snapshot
of a 2D spatial function Φðx; yÞ. The corresponding
pseudospatial coordinates x and y introduced later by
Eq. (3) are different scales of the time. We will show that
the parameters of Eq. (1) leading to the FS (respectively,
DT) can be mapped uniquely to the parameters of the
Ginzburg-Landau system, for which the same phenome-
nologies are observed [18]. This behavior is observed
robustly for all tested random initial conditions for an
interval of parameters.
Normal form equation.— The long time delay τ1 can be

written as τ1 ¼ 1=ε with a small positive parameter ε, and
τ2 ¼ κ=ε2 with some positive κ. With such notations, the
scale separation 1 ≪ τ1 ≪ τ2 is satisfied. Notice that this

also gives an indication of how one should proceed in the
case of more than two delays.
In order to derive a normal form describing universally

the dynamics close to the destabilization of the system in
Eq. (1), the multiple scale ansatz zðtÞ≔ εuðεt; ε2t; ε3t; ε4tÞ
is used. More precisely, substituting this ansatz as well as
the perturbation parameter ε2p ¼ aþ jbj þ jcj in Eq. (1),
and time delays τ1 ¼ 1=ε, τ2 ¼ κ=ε2, one obtains several
separate solvability conditions for different orders of ε
[see the Supplemental Material [19] for more details].
The resulting equation is the Ginzburg-Landau partial
differential equation,

Φθ ¼ pΦþ a1Φx þ a2Φy þ a3Φxx þ a4Φxy þ a5Φyy

þ dΦjΦj2; (2)

for a function Φðθ; x; yÞ, which is related to the solutions of
Eq. (1) by zðtÞ ¼ εΦðθ; x; yÞ, where

θ ¼ ε4δt; x ¼ εtð1 − δε2Þ; y ¼ ε2tð1 − jbjδεÞ;
(3)

and δ ¼ −ðaþ jbjÞ−1 > 0. The new spatial variables x and
y are different time scales of the original time t, and the new
time variable θ is the slow time scale ε4t. Therefore,
the new spatial and temporal variables can be called
pseudospace and pseudotime. The coefficients in Eq. (2)
are a1 ¼ a4 ¼ δjbj, a2 ¼ −1þ δjbj2, a3 ¼ δ=2, and a5 ¼
−δajbj=2. One can note that the diffusion coefficients in
this equation are real. The dynamics of Eq. (2) is known

(a)

(b) (c)

FIG. 1 (color online). Spiral defects in a system with delays,
Eq (1). (a) Typical time series of the absolute value jzðtÞj.
Spatiotemporal representation of the time series using pseudo-
space coordinates, Eq. (3), reveals the spiral defects: (b) Snapshot
of the spatial profile in the pseudospace coordinates (x, y) for
θ0 ¼ 0.4. (c) Constant level lines for the phase of z. Circles
denote the positions of defects. Parameters: a ¼ −0.985, b ¼ 0.4,
c ¼ 0.6 (corresponding to P ¼ 0.015), d ¼ −0.75þ i, τ1 ¼ 100,
and τ2 ¼ 10 000. Initial conditions are chosen randomly. See the
Supplemental Material [19] for the dynamics of the patterns.

(a)

(b) (c)

FIG. 2 (color online). Defects turbulence in delayed system,
Eq. (1). Same as in Fig. 1 for a different value of d ¼ −0.1þ i.
Spatiotemporal representation in (b) and (c) reveals defects
turbulence.
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[18,24] to possess various phase transitions, FS (e.g., for
d ¼ −0.75þ i), and DT (e.g., for d ¼ −0.1þ i). We found
a good correspondence between the dynamics of the
systems in Eqs. (2) and (1), taking into account the relation
to Eq. (3) between them. Although a systematic parametric
investigation is out of the scope of this Letter, the examples
of FS and DT for the above mentioned parameter values
shown in Figs. 1 and 2 are well reproduced. Moreover, the
observed dynamics is robust with respect to small varia-
tions of parameters. We remark that the observed phenom-
ena are not possible in systems with one time delay, since
they arise from the two-dimensional space (x, y) of the
normal form equation.
Drift and comoving Lyapunov exponents.— The spatial

coordinates in Eq. (3) can be rewritten as x ¼ x̄ − δū and
y ¼ ȳ − jbjδū, where x̄ ¼ εt, ȳ ¼ ε2t and ū ¼ ε3t. As a
consequence, we can infer the existence of a (fast) drift
along the vector Vd ¼ ð−1;−jbjÞ in the “naïve” coordi-
nates (x̄, ȳ). The corrected coordinates in Eq. (3) eliminate
this drift so that the remaining variables are governed by the
Ginzburg-Landau Equation (2).
The above phenomenon is a consequence of the proper-

ties of the maximal comoving (or convective) Lyapunov
exponent Λ [25]. In the spherical coordinates ū ¼ ρ cos α,
ȳ ¼ ρ sin α cos β, x̄ ¼ ρ sin α sin β, it is found that

Λðα; βÞ ¼ a sin α sin β þ ð1þ log ðjbj tan βÞÞ sin α cos β
þ ð1þ log ðjcj sin β tan αÞÞ cos α: (4)

Details of the calculation will be presented elsewhere.
A geometrical interpretation can be introduced using the
velocity V ¼ ðsin β tan α; cos β tan αÞ, along which the
perturbations evolve with a multiplier eΛðα;βÞ. The propa-
gation cone’s boundaries can be defined as the set
(α, β) such that Λðα; βÞ ¼ 0. The bifurcation point,
attained when the maximum of Λ is equal to zero,
is obtained at V ¼ δVd, corresponding to ðα0;β0Þ¼
ðtan−1ð−δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þjbj2
p

Þtan−1ðjbj−1ÞÞ. Note that the direction
Vd is also given by the multiscale method above. The above
result extends the standard linear stability analysis by
indicating the direction along which the destabilization
takes place. We notice that the comoving exponent
diverges logarithmically close to the axis α ¼ 0 and
β ¼ 0; i.e., instantaneous propagations are forbidden. In
the opposite limit, α → π=2 (respectively, β → π=2); Λ
approaches the value for the single delay case c ¼ 0
(b ¼ 0). Finally when both α, β → π=2 (infinite velocity),
Λ ¼ a and the dynamics is governed by the local term as
expected.
On the long-delay approximation.— Concerning the

relation between the delay system, Eq. (1), and the normal
form in Eq. (2), the following questions arise: To what
extent is the equivalence founded? Under which conditions
are the delays large “enough”? Dynamically, the absence of
the anomalous Lyapunov exponents [10] is required, or,

equivalently, the absence of strong chaos [11]. Numerically,
with the decreasing of delays, the spatiotemporal structures
become transients towards a periodic or constant amplitude
(jzj ¼ const) state. As a matter of fact, a solution of the
delay system evolves along the one-parametric line
ðθðtÞ; xðtÞ; yðtÞÞ defined by Eq. (3) in the pseudospace
(θ, x, y); see Fig. 3(a). In order to have a good correspon-
dence between the solutions of the delay system, Eq. (1),
and the normal form through the parametrization, Eq. (3),
the line ðxðtÞ; yðtÞÞ should wind up in the space (x, y)
sufficiently densely. In the leading order, this line satisfies
y ≈ εx and it is wrapped periodically at x ¼ 0 and x ¼ 1;
see Fig. 3(a). The distance between the neighboring
branches is ∼ε which determines the “discretization” level.
Thus, high delays imply a dense covering of the (pseudo)
space plane, as expected in the thermodynamic limit.
However, when such density is too small, the dynamics
changes drastically and the delay system behaves quite
differently from the corresponding normal form.
To illustrate such a behavior, we present in Fig. 3(b) the

analysis of the amplitude jzj statistics in the defect
turbulence regime for the model, Eq. (1). For small delays,
the dynamics relaxes to a stationary oscillating regime after
a transient, with the corresponding histogram showing a
shape very close to that obtained from a sinusoidal signal.
For higher τ’s , the histogram starts displaying a power-law
tail PðjzjÞ ∼ jzj1 for jzj → 0, indicating the stable appear-
ance of defects and the attainment of the long-delayed
regime.
The scaling exponent can be obtained analytically for

an arbitrary number of delays and equations. In the DT
regime, defects are the spatial points where jΦj ¼ 0 in an
N-dimensional space (N being the number of delays) and
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FIG. 3 (color online). “Small” delays effect. (a) One-parameter
curve xðtÞ, yðtÞ in the pseudospace determined by Eq. (3) for
ε ¼ 0.05. For larger distances between the branches (smaller
delays), the line does not resolve the cores of the spiral of the
corresponding Ginzburg-Landau model. (b) Numerical histo-
grams of jzj for the DT regime (parameters as in Fig. 2) for
increasing the delays values. Histograms for smaller delays (here,
τ1 ¼ 25, τ2 ¼ 25τ1) correspond to bounded, periodic solutions
with no defects, reached after a transient. A tail in the distribution
appears for higher delays (here, τ1 ¼ 50, τ2 ¼ 50τ1). The dashed
line is a reference curve PðjzjÞ ∼ jzj1.
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form a set D that we can assume is of a constant density
in space. In our case of N ¼ 2, these are point defects,
for N ¼ 3 line defects, etc.. In general, it holds that
codimðDÞ ¼ 2 in the N-dimensional space fx1;x2;…;xNg,
where fxig are pseudospatial coordinates. The delay
equation(s) dynamics approaches D along the domain
line L ¼ fx1ðtÞ; x2ðtÞ;…; xNðtÞ∶t ∈ Rg. The vicinity of
defects in the pseudospace affects the amplitude statistics of
the delay dynamics, which will be depending only on
codimðDÞ ¼ 2 and on dimðLÞ ¼ 1. Thus, the scaling
exponent does not depend on N or on the number of
equations and it can be shown to be equal to 1.
Semiconductor laser with two optical feedbacks.— The

results obtained from the study of the normal form,
Eq. (1), are expected to apply to a wide class of physical
systems. In the following, we consider a Lang-Kobayashi-
type model [26] of a single mode semiconductor laser with
optical feedback, generalized to a double external cavity
configuration:

E0ðtÞ ¼ ð1þ iαÞnðtÞEðtÞ þ η1Eðt − τ1Þ þ η2Eðt − τ2Þ;
Tn0ðtÞ ¼ J − nðtÞ − ð2nðtÞ þ 1ÞjEðtÞj2: (5)

EðtÞ is the complex electric field and nðtÞ the excess
carrier density. The system parameters are the excess
pump current J, the external cavities round trip
times τ1 and τ2 are measured in units of the photon
lifetime, and the feedback strengths are η1 and η2. The
linewidth enhancement factor α is specific for semicon-
ductor lasers and affects many aspects of their behavior
(see, e.g., [4]). We present here two examples of the
dynamics of Eq. (5) in the case of α ¼ 2 and α ¼ 4.
Suitable laser devices can be employed to realize the
corresponding experiments; in fact, such a range is
typical and, e.g., measurements in-between have been
reported [27].
In our case, shortly after the destabilization of the

“off-state” E ¼ 0, a multifrequency oscillating behavior
is found, corresponding to FS [α ¼ 2, Figs. 4(a)–4(b)]
or DT [α ¼ 4, Fig. 4(c)]. These regimes are very similar
to those shown in Fig. 1 and Fig. 2, respectively. In order
to compare their statistical properties, we report also
the distribution of the field amplitude jEj [Fig. 4(d)]. Its
shape is indeed consistent with the previous results and
the scaling of the tail marks the sign of the long-delay
regime as well. We point out also how α appears to
be an effective parameter switching between just
drifting defects [Figs. 4(a) and 4(b)] and irregularly
moving defects [Fig. 4(c)], thus suggesting which
kind of behavior could be expected for different laser
devices.
In conclusion, we have discussed a class of systems

describing the interplay of the oscillatory instability
with multiple, hierarchically long, delayed feedbacks.
We have shown that a generalized spatiotemporal repre-
sentation is able to uncover multiscale features otherwise
hidden in the complex temporal dynamics. In the case of
two delays, the existence of regimes of FS and DT has
been evidenced. By means of a multiple scale analysis,
an equivalence is shown to a two-dimensional complex
Ginzburg-Landau equation. The attainment of the long-
delay regime has been also analyzed. Finally, we
showed how the above phenomena occur in the case
study of a semiconductor laser with two external cavity
optical feedbacks, a generalization of a well-known and
studied configuration. As a perspective, our approach
can be applied in several experimental setups and in the
study of higher-dimensional pattern formations in delay
systems, such as the existence and characterization
of line defects in the three delays case. Moreover, we
expect that this formalism could be generalized for
other types of bifurcations as well and applied to the
study of specific experimental systems, such as delayed
networks like those commonly found in optical
communications.

We acknowledge the DFG for financial support in the
framework of Collaborative Research Center (SFB) 910
and useful discussions with A. Politi.

FIG. 4 (color online). Dynamics of the solution E of the system
in Eq. (5), represented as snapshot in the pseudospace for the
parameter values: τ1 ¼ 102, τ2 ¼ 104, η1 ¼ η2 ¼ 0.1, T ¼ 102,
and J ¼ −0.17. (a), (b) Amplitude and phase of E for α ¼ 2,
showing the occurrence of spiral defects. (c) Amplitude of E,
defects turbulence regime for α ¼ 4. The temporal behavior
is presented as movies in the Supplemental Material [19].
(d) Statistics of the field amplitude in the case (c); the line is
a power-law fit of the tail with exponent 0.98.
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