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Three-loop corrections to hyperfine splitting in muonium, generated by the gauge-invariant sets of
diagrams with muon and tauon loop light-by-light scattering blocks, are calculated. These results complete
calculations of all light-by-light scattering contributions to hyperfine splitting in muonium.

DOI: 10.1103/PhysRevLett.112.173004 PACS numbers: 31.30.jf, 32.10.Fn, 36.10.Ee

Calculation of the light-by-light (LBL) scattering con-
tributions to hyperfine splitting (HFS) in muonium has a
long history. The nonrecoil contribution generated by
the electron LBL scattering block was obtained in [1–3].
Respective recoil contributions are enhanced by the large
logarithm of the muon-electron mass ratio. Large loga-
rithm-squared contributions were calculated in [4], and
single-logarithmic and nonlogarithmic terms were obtained
only recently [5,6]. The LBL scattering contributions due
to other particles besides the electron should also be taken
into account. The hadron LBL scattering contribution was
calculated in [7]. Below we present the results for the only
remaining uncalculated LBL scattering contributions to
hyperfine splitting in muonium that are due to the virtual
muon and tauon loops.
The general expression for the muon loop LBL scattering

contribution to HFS in Fig. 1 is similar to the respective
electron loop contribution (see, e.g., [5,6]), and can be
written in the form

ΔE ¼ ½α2ðZαÞ=π3�ðm=MÞEFJ; (1)

wherem is the electron mass,M is the muon mass, Z ¼ 1 is
the muon charge in terms of the positron charge used for
classification of different contributions, the Fermi energy is
defined as (mr is the reduced mass)

EF ¼ ð8=3ÞðZαÞ4ðm=MÞðmr=mÞ3mc2; (2)

and J is a dimensionless integral

J ¼ −
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Tðk2; k0Þ:

(3)

The dimensionless function Tðk2; k0Þ is a sum of the ladder
and crossed diagram contributions in Fig. 1,

Tðk2; k0Þ ¼ 2TLðk2; k0Þ þ TCðk2; k0Þ: (4)

Explicit expressions for the functions TLðk2; k0Þ and
TCðk2; k0Þ can be obtained by the substitution m → M,
qμ → kμ from the respective formulas in [6], where these
functions were calculated in the case of the electron LBL
scattering block.
Only the even in k0 terms in the function Tðk2; k0Þ

contribute to the integral in Eq. (3). After the rescaling
of the integration momentum k → kM, the Wick rotation,
and the symmetrization of the function Tðk2; k0Þ with
respect to k0, Tðk2; k0Þ → Tðk2; k20Þ, the integral in
Eq. (3) turns into

J ¼ 3
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dk2
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π
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Tðk2; cos2θÞ

k2 þ 16μ2cos2θ
; (5)

where we have parameterized the Euclidean four-vectors
as k0 ¼ k cos θ, jkj ¼ k sin θ, μ ¼ m=ð2MÞ; the function
Tðk2; cos2 θÞ is the same function as in Eq. (3) but
symmetrized with respect to k0 and with the Wick-rotated
momenta. The dimensionless function Tðk2; cos2 θÞ after
rescaling depends on the dimensionless momentum k and
does not contain any parameters with dimension of mass.
We are looking for the μ-independent contributions

generated by the integral in Eq. (5). The term with μ2 in
the denominator is irrelevant at large k, and the integral is
convergent at large k due to ultraviolet convergence of all
diagrams with the LBL insertions. The case of small
integration momenta is more involved. Because of gauge

FIG. 1. Diagrams with the muon (tauon) light-by-light
scattering block.
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invariance, the LBL block is strongly suppressed at k → 0,
and we expect that the integral in Eq. (5) remains finite even
at μ ¼ 0. As a result of this finiteness, the diagrams in
Fig. 1 do not generate nonrecoil contributions to HFS in
accordance with our physical expectations. However, small
integration momenta convergence of contributions
of individual diagrams at μ ¼ 0 cannot be taken for granted,
and we have to consider separate entries in more detail.
Using the explicit integral representations for the functions
TLðk2; cos2θÞ and TCðk2; cos2 θÞ (see [6]), we find that
these functions, and separate terms in the respective integral
representations, decrease not slower than k2 at k2 → 0. The
integral in Eq. (5) is logarithmically divergent at μ ¼ 0 if
Tðk2Þ ∼ k2 when k2 → 0. This means that we cannot omit μ
in Eq. (5) calculating the integrals with those terms in Tðk2Þ
that decrease as k2 when k2 → 0. To facilitate further
calculations we represented the functions TLðk2; cos2 θÞ
and TCðk2; cos2 θÞ in the form

TLðk2; cos2θÞ ¼ Treg
L ðk2; cos2θÞ þ Tsing

L ðk2; cos2θÞ; (6)

TCðk2; cos2 θÞ ¼ Treg
C ðk2; cos2 θÞ þ Tsing

C ðk2; cos2 θÞ; (7)

where the functions Treg decrease faster than k2 at small k2,
and the functions Tsing decrease as k2 at small k2.
In these terms the integral in Eq. (5) has the form

J ¼ Jreg þ Jsing; (8)

where
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32π

Z
∞

0

dk2

k2

Z
π

0

dθsin2θ
TregðsingÞðk2; cos2θÞ
k2 þ 16μ2cos2θ

;

(9)

and

TregðsingÞðk2; cos2θÞ ¼ 2TregðsingÞ
L ðk2; cos2θÞ

þ TregðsingÞ
C ðk2; cos2θÞ: (10)

We can safely let μ ¼ 0 in the integral Jreg, which makes
calculation of this integral straightforward. As a result
we obtain

Jreg ¼ −2.146 35ð5Þ: (11)

Calculation of the integral Jsing is more involved. The
functions Tsing

L ðk2; cos2 θÞ and Tsing
C ðk2; cos2 θÞ decrease as

k2 at low k2. As a result, they generate logarithmic
contributions to the momentum integral in Eq. (5) that

are cut off at small k ∼ μ. We calculated the coefficients
before the terms that are proportional to k2 analytically,
and checked that these terms cancel in the sum
2Tsing

L ðk2; cos2θÞ þ Tsing
C ðk2; cos2θÞ. This cancellation can

be used to get rid of the parameter μ in the integral Jsing in
Eq. (9). To this end we write the momentum integral Jsing as
a sum of two integrals

Jsing ¼ Jsing< þ Jsing>; (12)

where integration over k2 goes from zero to 1 in the
integral Jsing<, and it goes from 1 to infinity in the
integral Jsing> . The separation point k2 ¼ 1 is arbitrary;
the result for the integral Jsing does not depend on its
choice. We can safely let μ ¼ 0 in the integral Jsing>. To
facilitate calculation of the integral Jsing< we subtract
from the integrand all terms proportional to k2 at small k.
Because of the cancellation mentioned above, this sub-
traction does not change the value of the integral. After
the subtraction we can let μ ¼ 0 before calculation of this
integral as well. Calculating the integrals, we obtain

Jsing< ¼ 0.174 47ð2Þ; Jsing> ¼ 1.129 51ð3Þ: (13)

We have checked by direct calculations that the sum

Jsing< þ Jsing> ¼ 1.303 98ð4Þ: (14)

does not depend on the arbitrary separation point.
Collecting the results in Eq. (11) and Eq. (14), we obtain

J ¼ −0.842 4ð1Þ; (15)

and finally

ΔE ¼ −0.842 4ð1Þ½α2ðZαÞ=π3�ðm=MÞEF ≈ −0.2274 Hz:

(16)

Using the same methods as above, we also calculated a
tiny contribution to hyperfine splitting generated by the
tauon LBL scattering block in Fig. 1,

ΔEτ¼−0.00358ð1Þ½α2ðZαÞ=π3�ðm=MÞEF≈−0.0010Hz:

(17)

Combining the results in Eq. (16) and Eq. (17) with the
other LBL scattering contributions calculated earlier in
[1–7], we obtain the total contribution of the LBL scattering
block to hyperfine splitting in muonium

ΔE ¼ α2ðZαÞ
π

ð1þ aμÞEF½−0.472 514ð1Þ�

þ α2ðZαÞ
π3
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�

þ ΔEhadr þ ΔEτ ≈ −240.2 Hz; (18)
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whereΔEhadr ¼ −0.0065 Hz is the hadronic contribution [7].
Hopefully the new result in Eq. (16) will find applica-

tions in the new high-accuracy measurement of the muo-
nium hyperfine splitting planned at J-PARC, Japan [8]. The
completion of calculations of all LBL scattering contribu-
tions to hyperfine splitting in muonium brings us one step
closer to the final goal of reducing the theoretical error of
the hyperfine splitting in muonium below 10 Hz [9].
Contributions that are still unknown include three-loop
purely radiative corrections of order α3ðZαÞEF, three-loop
radiative-recoil corrections of order α2ðZαÞðm=MÞEF, and
nonlogarithmic recoil corrections of order ðZαÞ3ðm=MÞEF
(see detailed discussion in [9]); these are the main sources
of the theoretical uncertainty. We hope to finish calculation
of all remaining three-loop radiative-recoil corrections in
the near future.
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