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The critical nuclear charge Zc required to bind a nucleus plus two electrons in a heliumlike atom has
recently been an area of active study, resulting in a disagreement with earlier calculations and with the value
obtained from the radius of convergence 1=Z� of a 1=Z expansion of the energy. In order to resolve the
disagreement, have performed high-precision variational calculations in Hylleraas coordinates. With the
double basis set method, we have been able to obtain good convergence for Z very close to Zc, which
together with the Hellmann-Feynman theorem yields the value Zc ¼ 0.911 028 224 077 255 73ð4Þ,
corresponding to 1=Zc ¼ 1.097 660 833 738 559 80ð5Þ. This value is in agreement with the value obtained
by Baker et al. [Phys. Rev. A 41, 1247 (1990)]. A significant feature of the results is that the outer electron
remains localized near the nucleus, even at Z ¼ Zc, and the bound state evidently changes smoothly into a
shape resonance for Z < Zc. A qualitative polarization potential is proposed to account for the resonance,
and the radial distribution function for the electron density is calculated.
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The critical nuclear charge Zc is the minimum charge
required for an atomic system to have at least one bound
state. ForZ < Zc, the ground state becomes unstable against
electron detachment. For real physical systems, Z can only
take on integer values, but there is great interest in studying
the analytic properties of the function EðZÞ, where E is
the ground state energy and Z is a continuously variable
parameter. At the outer fringes of stability near Z ¼ Zc,
electron correlation effects play a crucial role in stabilizing
the system, and from such studies one can learn about
correlation effects in real physical systems. The passage
from stability to instability can also be analyzed as a phase
transition, as was emphasized by Kais and Shi [1].
Since hydrogenic atoms always have an infinity of

Rydberg states, the simplest example is a heliumlike atom
consisting of a nucleus of charge Ze and two electrons in a
bound state. Z ¼ 2 corresponds to neutral helium with an
infinity of bound states, and Z ¼ 1 to H− which, as was
proved by Hill [2,3], has only a single 1s2 1S bound state
(the 2p2 3P state in the photodetachment continuum is also
bound [4]). As Z is further reduced below Z ¼ 1, one
electron moves progressively further away until it becomes
unbound at the critical value Zc ≃ 0.911. At this point, the
total nonrelativistic energy EðZÞ of the two-electron system
is just the energy EðZÞ ¼ −Z2=2 atomic units (a.u.) of the
1s core (assuming infinite nuclear mass). In constrast, the
excited states become unbound at Z ¼ 1, as studied by
Katriel, Puchalski, and Pachucki [5].
Following early studies by Stillinger and co-workers

[6–8], Baker et al. [9] performed extensive variational
calculations to determine an accurate value for Zc, and its
relationship to the radius of convergence λ� ¼ 1=Z� for the
1=Z expansion

EðZÞ ¼ Z2ðE0 þ E1=Z þ E2=Z2 þ � � �Þ: (1)

Their work and subsequent analysis of the perturbation series
by Ivanov [10] seemed to indicate that Z� ¼ 0.911 028,
and Zc ¼ Z� to within the accuracy of the calculation.
However, recent calculations by Guevara and Turbiner [11]
yielded the smaller value Zc ¼ 0.910 850, in clear disag-
reement with Z�. In addition, Zamastil et al. [12] obtained
Z� ¼ 0.9021 from a new numerical analysis of only the
first 20 coefficients (out of 400) of the perturbation series
calculated by Baker et al. [9].
The purpose of the present work is to establish a

definitive value for Zc in order to resolve the existing
contradiction in the literature, and to study the physical
nature of the atomic system in the vicinity of Zc. The early
calculations by Stillinger [6–8] suggested that the system
may persist as a bound state in the continuum, even for
Z < Zc. However, this possibility has been questioned
by Reinhardt [13] in an analysis based on the complex
rotation method. Our results indicate that the outer
electron remains localized near the nucleus even for
Z ¼ Zc, and that the system moves smoothly from a
bound state for Z > Zc to a shape resonance just above
threshold for Z < Zc, in agreement with the analysis of
[14] and [15].
In order to explore the behavior of the system for

values of the nuclear charge Z very close to Zc, we have
performed high-precision variational calculations in
Hylleraas coordinates to solve the Z-scaled Schrödinger
equation for a two-electron atom with infinite nuclear
mass �
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where ri is the electronic distance for electron i and
r12 ¼ jr1 − r2j. The Z-scaled atomic unit of distance is
a0=Z, where a0 is the Bohr radius, and ~E ¼ E=Z2.
The multiple basis set method described by Drake

[16,17] was used for the present calculations. This method
has been used by Drake and co-workers to calculate
high-precision eigenvalues for He, H−, and Ps− [18],
and especially the higher-lying Rydberg states [19]. In
the present work, calculations were performed in quadruple
precision arithmetic with double and triple basis sets, using
wave functions of the symmetrized form

ψðr1; r2; r12Þ ¼
Xq
p¼1

Xiþjþk≤Ωp

i;j;k

cpi;j;k½ri1rj2rk12e−αpr1e−βpr2

þ ri2r
j
1r

k
12e

−αpr2e−βpr1 �; (3)

with q ¼ 2 for a double basis set and q ¼ 3 for a triple basis
set. For fixed values of the nonlinear parameters αp and βp,
we calculate the optimized linear parameters ci;j;k by use
of the inverse iteration method to find the eigenvalues.
In addition, the energy is minimized with respect to all
four (for a double basis set) or six (for a triple basis set)
nonlinear parameters, the derivatives of the energy with
respect to these parameters being calculated analytically.
As a consequence of the optimization, the nonlinear
parameters separate naturally into blocks corresponding
to different length scales of the physical problem. For a
double basis set, for example, the parameters α1 and β1
describe the asymptotic behavior of the first and second
electron respectively, while α2 and β2 describe the short-
range behavior of the first and second electron. This feature
allows one to track separately the behavior of each electron
at different distance scales, making the use of the multiple
basis set method especially suited to an investigation of
the critical nuclear charge problem where the length scales
for the two electrons are very different.
The ground-state energy of the system was calculated for

values of Z between 1 and 0.910 (Fig. 1). With a double
basis set, we set Ω2 ¼ Ω1 with the additional truncation

iþ jþ kþ ji − jj ≤ Ω2 þ 7 for p ¼ 2 (the short-range
sector). The convergence of the variational atomic
energy as a function of the number of terms in the basis
set degrades only slowly when the nuclear charge is
decreased. Extrapolation to an infinite basis set gives 16
significant digits at Z ¼ 1 and 13 significant digits close to
the critical point. In addition, because the bound state gets
exceedingly close to the detachment threshold when the
nuclear charge approaches the critical value, basis sets
with increasing sizes are needed to see it. It was found that
a significant improvement in the rate of convergence could
be achieved with a smaller number of basis functions if a
triple basis set was used with Ω2 ¼ Ω1 and Ω3 ¼ Ω1 − 8
(Fig. 2). The most accurate results close to the critical
point were obtained with triple basis sets containing up to
2276 terms (Table I).
The variational calculation giving an upper limit to the

true energy, the smallest value of Z at which the calculated
energy lies below the detachment threshold gives an upper
bound to the exact value of the critical charge Zc. It was
found by Baker et al. [9] that Zc < 0.911 03. As shown in
Table I we find Zc < 0.911 028 224 0773, which is con-
sistent with [9], but more restrictive.
A better determination of Zc can, in principle, be obtained

by extrapolation. In thework of Guevara and Turbiner [11], a
set of nine values of the atomic energy calculated to 12 digits
for values of Z between 0.95 and 1.35 was fitted to a Puiseux
series with half-integer powers of (Z − Zc) to yield Zc ¼
0.910 850 (with no estimate of the uncertainty). The varia-
tional energies were calculated with the quasirandom
method described by Korobov [20], with wave functions
of the form

P
N
i¼1 ci expð−αir1 − βir2 − γir12Þ, where the

nonlinear parameters αi, βi, and γi are chosen randomly from

FIG. 1. Nonrelativistic atomic energy E (assuming infinite
nuclear mass) for different values of the nuclear charge Z.

FIG. 2 (color online). Convergence behavior at Z ¼ 0.911 028
224 0773 for double (black circles) and triple (red squares) basis
sets containingN functions (EN is the variational energy from a set
of N functions, Eext the energy extrapolated to N ¼ ∞).
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specified intervals. The authors mention that the calculation
could not be performed for Z < 0.95 due to a dramatic
decrease in the rate of convergence below this point.
We do reproduce this result if we use the same data set

and the same fit function, but we are also able to show that
the accuracy of the above extrapolation is rather poor.
Indeed, the multiple basis set method allows a much closer
approach to the critical point, with the benefit of a more
controlled extrapolation. A linear extrapolation using the
first six points in Table I (where a bound state still exists)
gives Zc ¼ 0.911 028 224 077 255 73ð8Þ. The uncertainty
was evaluated by predicting the value of Z at the sixth
point from a linear extrapolation using the other five
points. Including higher powers of Z does not improve
the accuracy. Another approach is to note that by the
Hellmann-Feynman theorem

dE
dð1=ZÞ ¼

Z
ψ� ∂H

∂ð1=ZÞψdv ¼
�

1

r12

�
; (4)

where H is the Hamiltonian of the system, ψ the wave
function, and dv the volume element. Expression (4) can
be evaluated with the variational wave function calculated
at a given Z. At Z ¼ 0.911 028 224 0773, we obtain
dE=dð1=ZÞ ¼ 0.245 189 0639ð1Þ. This value agrees with
a direct evaluation of the slope from our data set, which
gives dE=dð1=ZÞ ¼ 0.2452ð1Þ, in agreement with the
value 0.245 obtained by Baker et al. [21]. Furthermore,
the use of a linear extrapolation close to the critical
point is substantiated by the Hellmann-Feynman theorem,
together with the proof by the Hoffmann-Ostenhof’s and
Simon [22] that the wave function remains square integrable
at the critical point, as was already pointed out by Baker
et al. [9]. A linear extrapolation with the value of the
slope obtained from the Hellmann-Feynman theorem
yields Zc ¼ 0.911 028 224 077 255 73ð4Þ, or 1=Zc ¼
1.097 660 833 738 559 80ð5Þ, in agreement with the direct
linear extrapolation but with a slightly smaller error bar. This
is our final recommended value for Zc.

Finally, we find that well-defined eigenvalues continue
to appear for Z < Zc, corresponding to positive energies
for the outer electron (Table I). Furthermore, the nonlinear
parameter β1 describing the asymptotic behavior of the
outer electron does not tend to zero as Z → Zc, as would
happen if the outer electron would move to infinity at the
critical point. On the contrary, as shown in Fig. 3, β1 still
stabilizes to a well-defined value, independent of the size
of the basis set and of its structure (double or triple). The
fact that the outer electron remains characterized by a
finite length scale at the critical point indicates that the
wave function not only is square-integrable at this point, as
was proven by the Hoffmann-Ostenhof’s and Simon [22],
but also remains localized at a finite distance from the
nucleus.
These observations point to the existence of resonances

induced by the shape of the atomic potential. In a simplified
model, we consider the combination of a long-range
Coulomb repulsion of the form −ðZ − 1Þ=r and a short-
range attraction due to the polarization of the core,
corresponding to a charge-dipole interaction of the form
−αd=r4 (where αd is the dipole polarizability, with
αd ¼ 9=ð2Z4Þ for a hydrogenic ion [23]), resulting in
the potential

VðrÞ ¼ −Z − 1

r
− 9

2Z4r4
: (5)

Strictly speaking, the polarization model does not apply to
an S state, due to the divergence of the 1=r4 operator in this

TABLE I. Extrapolated nonrelativistic atomic energy E
(assuming infinite nuclear mass) from a triple basis set including
up to 2276 terms for different values of the nuclear charge Z.

Z (a.u.) E=Z2 (a.u.)

0.911 028 224 077 8 −0.500 000 000 000 160 79ð1Þ
0.911 028 224 077 7 −0.500 000 000 000 131 25ð1Þ
0.911 028 224 077 6 −0.500 000 000 000 101 71ð1Þ
0.911 028 224 077 5 −0.500 000 000 000 072 17ð1Þ
0.911 028 224 077 4 −0.500 000 000 000 042 64ð2Þ
0.911 028 224 077 3 −0.500 000 000 000 013 08ð1Þ
0.911 028 224 077 2 −0.499 999 999 999 983 54ð1Þ
0.911 028 224 077 1 −0.499 999 999 999 954 00ð1Þ
0.911 028 224 077 0 −0.499 999 999 999 924 46ð1Þ

FIG. 3 (color online). Inverse nonlinear parameter r as a
function of the nuclear charge Z for 0.910 < Z < 1 (0.910 is
the smallest value of Z at which β1 still stabilizes to a well-
defined value).
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case. However, when this model potential is evaluated at
Z ¼ 0.9 (Fig. 4), it does exhibit a potential well with a peak
around 5 a.u., in qualitative agreement with the distance
scale found by the variational calculation (Fig. 3). Hence,
we believe that this model potential supports the claim that
for Z < Zc the system exhibits shape resonances just above
threshold.
To further elucidate the electronic structure near the

critical nuclear charge, we have calculated the radial
electron density distribution function

ρðr1Þdr1 ¼ r1dr1

Z
∞

0

r2dr2

Z
r1þr2

jr1−r2j
r12dr12jψðr1; r2; r12Þj2

(6)

at Z ¼ Zc, such that
R∞
0 ρðr1Þdr1 ¼ 1 is the complete

three-dimensional normalization integral over both elec-
trons. The results are included in Fig. 4. To show directly
the effect of the outer electron on the density distribution,
the quantity plotted is

ΔρðrÞ ¼ 2ρðrÞ − ρ1sðrÞ; (7)

where ρ1sðrÞdr ¼ r2drj2e−rj2 is the radial density distri-
bution in Z-scaled atomic units for a hydrogenic 1s electron.
Both curves are plotted in the figure for comparison. Since
2ρðrÞ≃ ρ1sðrÞ for r ≪ 1, the two terms nearly cancel in (7)
and so ΔρðrÞ is very small near the nucleus. One might
intuitively expect that ΔρðrÞ → 0 for all r as Z → Zc,
corresponding to the outer electron moving out to infinite
distance and becoming unbound, while leaving behind a
hydrogenic 1s electron. The actual curve is profoundly
different, with ΔρðrÞ remaining localized behind the poten-
tial barrier formed by the combined effect of the long-range
Coulomb repulsion and short-range polarization attraction,
as shown in the figure. The exponential decrease is con-
sistent with Eq. (19) of Ref. [9]. For Z < Zc, the quasibound
particle can tunnel through the barrier and escape to produce
a shape resonance in the elastic scattering cross section.

To conclude, we have shown that the multiple basis set
method is especially suited to an investigation of the
critical nuclear charge problem for two-electron atoms.
From high-precision variational calculations with triple
basis sets, together with the Hellmann-Feynman theorem,
we obtain Zc ¼ 0.911 028 224 077 255 73ð4Þ which is by
far the most accurate value in the literature. It confirms the
value found by Baker et al. [9] but excludes the value
obtained by Guevara and Turbiner [11]. We also observe
the transition of the system from a bound state to a shape
resonance as the nuclear charge goes through the critical
point. A simplified model potential is proposed to explain
the formation of these resonances. A more detailed study
of the structure of the variational wave function at and
below the critical point, and the inclusion of mass polari-
zation effects, should shed more light on the physical
nature of the system in this region of parameter space. In
addition, we now plan a new calculation of the coefficients
of the 1=Z expansion.
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Note added in proof.—We have recently learned that

Schwartz [24] has obtained a value for Zc that agrees with
ours to 12 significant figures.
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