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We find an attractor for an axially symmetric magnetic field evolving under the Hall effect and
subdominant Ohmic dissipation, resolving the question of the long-term fate of the magnetic field in
neutron star crusts. The electron fluid is in isorotation, analogous to Ferraro’s law, with its angular velocity
being approximately proportional to the poloidal magnetic flux, Ω ∝ Ψ. This equilibrium is the long-term
configuration of a magnetic field evolving because of the Hall effect and Ohmic dissipation. For an initial
dipole-dominated field, the attractor consists mainly of a dipole and an octupole component accompanied
by an energetically negligible quadrupole toroidal field. The field dissipates in a self-similar way: Although
higher multipoles should decay faster, the toroidal field mediates transfer of energy into them from the
lower ones, leading to an advection diffusion equilibrium and keeping the ratio of the poloidal multipoles
almost constant. This has implications for the structure of the intermediate-age neutron stars, suggesting
that their poloidal field should consist of a dipole and an octupole component accompanied by a very weak
toroidal quadrupole. For initial conditions that have a higher multipole l structure, the attractor consists
mainly of l and lþ 2 poloidal components.
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Introduction.—The evolution of the magnetic field inside
an electrically neutral conducting medium, where only one
species of particles is available to carry the electric current,
is described by the Hall drift. The Hall effect has attracted
attention in astrophysics, as it can drive magnetic field
evolution in neutron star (NS) crusts. This is because the
crust is a highly conducting ion crystal lattice, where free
electrons carry the electric current while any Lorentz force
is balanced by elastic forces. Thus, the system is always in
dynamical equilibrium, and its behavior is described
kinematically.
A puzzling question in this context is whether the Hall

effect leads to turbulent cascade [1] and complete dis-
sipation of the field or whether there is a stable attractor
state towards which the field relaxes. The two-dimensional
(2D) and three-dimensional (3D) simulations in Cartesian
boxes [2–4] support the fact that the field undergoes
turbulent cascade, although with evidence of stationary
structures [5,6]. Turbulence develops even in the case of
relatively low magnetic Reynolds numbers, RM ∼ 30.
Supporting this, Ref. [7] argued that any stationary closed
configuration is neutrally stable and therefore would not be
an attractor. This is unlike the magnetohydrodynamics
(MHD) description, where it is possible for the field to
exchange energy with the plasma and evolve to a lower
energy state. Crust studies assuming axial symmetry, on the
contrary, do not find any sign of turbulent cascade, yet Hall
evolution is nontrivial [8–13]. After some initial oscillatory
behavior that lasts longer for larger initial RM, the Hall
effect becomes saturated [14]. This saturation occurs while
the Ohmic time scale is still much longer than the Hall time

scale, meaning that the evolution is still far from pure

Ohmic decay.
In this Letter, we show that there is indeed an attractor

state for axially symmetric magnetic fields evolving under
the Hall effect and Ohmic decay. This structure is charac-
terized by constant electron angular velocity Ω along
poloidal field lines, labeled by poloidal magnetic flux Ψ,
similar to Ferraro’s law [15], with the additional property
that Ω ≈ αΨ, where α is a constant. We find that a great
variety of initial conditions of magnetic fields relax to this
state, which on a longer time scale decays Ohmically,
retaining its structure.
Hall evolution.—An axially symmetric magnetic field

in spherical coordinates (r, θ, ϕ) written as B ¼ ∇Ψ×
∇ϕþ I∇ϕ, where I is related to the toroidal field and
cIðr; θÞ=2 is the poloidal current passing through a
spherical cap of radius r and opening angle θ. This
field resides inside a conductor in which only electrons of
number density ne are free to move with velocity v. The
electric current density is j ¼ −enev, the electric field is
E ¼ −ðv × B=cÞ þ ðj=σÞ, where σ is the electric conduc-
tivity, and c and e are the speed of light and the elementary
electron charge. Using Ampère’s law ∇ × B ¼ ð4π=cÞj, the
induction equation becomes

∂B
∂t ¼ −

c
4πe

∇ ×

�∇ × B
ne

× B

�
−
c2

4π
∇ ×

�∇ × B
σ

�
: (1)

The first term in the right-hand side describes Hall evolu-
tion, the second Ohmic dissipation. Their ratio is measured
by the magnetic Reynolds number RM ¼ σjBj=ðneecÞ. A
magnetic field is in Hall equilibrium when the Hall term
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is zero [16–19]. To understand the evolution of the
magnetic field, it is more illuminating to write
Eq. (1) in terms of Ψ and I. To do so, we define χ ¼
c=ð4πener2sin2θÞ, the Grad-Shafranov operator Δ� ¼
ð∂2=∂r2Þ þ ðsin θ=r2Þð∂=∂θÞ½ð1= sin θÞð∂=∂θÞ� [17], and
the electron angular velocity Ω ¼ vϕ=ðr sin θÞ ¼ χΔ�Ψ.
Equation (1) now reads

∂Ψ
∂t þ r2sin2θχð∇I ×∇ϕÞ · ∇Ψ ¼ c2

4πσ
Δ�Ψ; (2)

∂I
∂t þ r2sin2θ½ð∇Ω ×∇ϕÞ · ∇Ψþ Ið∇χ ×∇ϕÞ ·∇I�

¼ c2

4πσ

�
Δ�I −

1

σ
∇I ·∇σ

�
: (3)

The Hall evolution of the poloidal part of the field is
mediated through the toroidal part, Eq. (2), while the
toroidal part evolves either because of twisting of the
poloidal field lines when Ω is not constant along a field
line or because of the geometric-density term χ if
I ≠ IðχÞ, Eq. (3).
We used the code presented in Ref. [13]. The initial

maximum RM in the simulations was chosen to be in the
range 40–80, and the evolution was saturated after a few
Hall time scales, with the maximum RM still being in the
range of 20–50. The crust covers 0.2 of the NS’s radius; the
electron density varies by 2 orders of magnitude from
the surface of the star to the crust-core interface. Similar
results have been found for a variety of other choices.
The Hall attractor.—In Ref. [13], we found the surpris-

ing result that for several different initial conditions, the
field adopted a similar state at late times, with Hall drift
enforcing isorotation, saturating the Hall effect. In this
Letter, we show that this is a fundamental behavior under
the influence of the Hall effect. After some initial Hall
evolution, the field relaxes to a particular isorotation profile
characterized by Ω ≈ αΨ, where α is a constant of pro-
portionality, which is insensitive to the choice of initial
conditions. This result holds even if a higher multipole l
initial state is chosen, with the system relaxing to a mixture
of l and lþ 2, with Ω and Ψ linearly related. Note that
even if the system starts from some different isorotating
profile, it evolves to this particular one.
We explored a wide variety of initial conditions and crust

profiles, including cases out of Hall equilibrium, and mixed
initial poloidal and toroidal fields of various polarities and
energy ratios. In general, the early evolution is a response
to any imbalanced terms, with whistler waves launched.
Eventually, the system relaxes to a state where Ω ≈ αΨ; the
details of the relation depend on the choice of the density
profile and conductivity. An example is shown Fig. 1 (top
panel), which starts with significant differential rotation but
is in a state of isorotation after one Ohmic time. To make

this evident, we plotted (Ω, Ψ) for every grid point of our
simulation (see Fig. 2).
We noticed that the Hall attractor ΩðΨÞ lies close to

the minimum rotation rate of the lowest order Ohmic
mode. This naturally gives Ω ∝ Ψ in the attractor state
since the angular velocity for an Ohmic eigenmode
Ω ¼ χΔ�Ψ ¼ 4πσχ=ðc2τÞΨ, where τ is the decay time.
Although the Ohmic mode has significant differential
rotation due to the variation of σχ across the crust, we
find that we can approximately reproduce the attractor by
choosing the lowest value of σχ along each field line. As

FIG. 1 (color online). A meridional section of the star showing
Ω in color normalized to its maximum initial value Ω0 and the
poloidal field lines in black. Top panel: The initial state is a dipole
poloidal field in barotropic MHD equilibrium, with the electron
fluid moving faster near the crust-core boundary. This field
evolves towards isorotation, as shown in the right plot, where
contours of constantΩ coincide with those of constantΨ. Bottom
panel: The initial state is chosen to be Ω ¼ αΨ, with α a negative
constant; the field starts in isorotation and maintains this state
while dissipating (see Ref. [20]).
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most of the field lines cross the equator near the base of
the crust, they have the same minimum value of σχ;
therefore, the Ω-Ψ relation is almost linear.
To further investigate the properties of this state, we

constructed a Hall equilibrium where Ω ∝ Ψ and I ¼ 0,
and used it as an initial condition, for various choices of ne
and σ profiles. Once Hall evolution starts, the dependence
of ΩðΨÞ changes slightly while maintaining its isorotation
and its overall structure (see Figs. 1 and 2, bottom panels).
We decompose the magnetic field on the surface of the star
in terms of cl ¼ ð2lþ 1Þ=ð2lþ 2Þ R 1

−1 BrPlðμÞdμ, where
Br is the radial field on the NS’s surface, μ ¼ cos θ, and Pl
is the Legendre polynomial of lth order. The Hall attractor

field consists of a dipole component (l ¼ 1) and an
octupole (l ¼ 3) whose relative intensity depends on the
crust properties and which is counteraligned with the
dipole. Higher multipoles are present, but their intensity
is smaller. The weak toroidal field developed is in the l ¼ 2
component.
The finite conductivity leads to some dissipation of the

field. As the Ohmic dissipation time scale for the l ¼ 3
poloidal component is shorter than that of the l ¼ 1, it
pushes the magnetic configuration out of the isorotation
state. The role of the l ¼ 2 toroidal field is to transfer
energy from the l ¼ 1 poloidal component into the l ¼ 3
to compensate for the losses. Indeed, the ratio of the l ¼ 1
and l ¼ 3 varies slowly, as opposed to a pure Ohmic decay,
where l ¼ 1 eventually dominates (see Fig. 3). This
evolution is an advection-diffusion equilibrium, where
the system maintains its structure and evolves self-similarly
with time, with the energy being dissipated by the Ohmic
term and the slightly imbalanced Hall term rearranging the
field so that the changes in the structure are annulled.
Quite remarkably, a choice of an initial poloidal field

consisting of l ¼ 2, l ¼ 3, or a higher multipole leads to a
long-term state that is dominated by the initial component
and an lþ 2 multipole for the poloidal field, while the
toroidal field is of multipole order lþ 1. The field tends to
relax to an isorotation state with an approximate linear
relation between Ψ and Ω, as shown for an l ¼ 3 field
in Fig. 4.
Even in the case of constant density, the dependence

of χ on r2 sin2 θ differentiates the magnetic evolution of
a Cartesian box simulation to a crust. To test that

FIG. 2 (color online). Scatter plot of Ω and Ψ, each point
corresponding to a grid point of the simulation. Top panel: The
scatter plot for the case shown in Fig. 1, top panel. Initially, there is
differential rotation of the electron fluid along the field lines (black
points), with multiple values of Ω for given Ψ, which after some
Hall evolution tend to concentrate in a narrower region (blue and
green points), and eventually the system saturates to isorotation
(red points). Bottom panel: The scatter plot for a system starting
with Ω ¼ αΨ (black points). The initial structure is very close to
the attractor state; thus, the system changes its structure only
slightly, as shown withΩ andΨ deviating from linearity (blue and
green points, extending to smaller Ψ’s). However, the system
maintains isorotation, even after a significant part of the field has
been dissipated (red points) (see Ref. [20]).

FIG. 3 (color online). The ratio of the octupole over the dipole
component on the surface of the star, as a function of time, for a
magnetic field that starts at Ω ¼ αΨ and evolves under the Hall
effect or Ohmically only (red solid and dashed lines, respectively,
starting at 0.63), and for a barotropic equilibrium initial condition
(shown in green). Under the influence of Ohmic dissipation only,
the octupole decays faster than the dipole component; thus, their
ratio decreases. When the Hall term is included, after some
transient initial evolution, the ratio stays almost constant. The
field that started from the barotropic initial condition eventually
reaches a ratio close to the Ω ¼ αΨ state.
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hypothesis, we simulated crusts with ne ∝ 1=ðr2sin2θÞ
(thus, χ ¼ const) and compared them with realistic
χ ≠ const simulations. We found that higher multipoles
were developing much faster and to higher intensities
in χ ¼ const simulations, compared to the χ ≠ const
ones. This difference is mainly because of the second
term of Eq. (3); indeed, if we expand it, we find
r2sin2θ½ðχ∇Δ�Ψþ Δ�Ψ∇χÞ × ∇ϕ� ·∇Ψ. By running
multiple simulations, we noticed that these two terms
tend to have opposite contributions. On the contrary, the
third term in the right-hand side of Eq. (3), which was
quadratic in I, is, in general, weak and has a minor
contribution. This can provide a path to compare the
behavior of the magnetic field in Cartesian box simula-
tions and crusts; however, further investigation is required.
Neutron star long-term state.—A newborn NS under-

goes a stage during which its crust freezes, initiating Hall
evolution. A realistic crust of thickness 1 km, ne ranging
from 1032−36 cm−3, σ in the range 1021−24 s−1, and an
initial surface magnetic field of 1014 G, the NS needs a few
million years of its life to evolve towards the attractor state.

Once it reaches the attractor state, RM is still significantly
larger than unity and spends a few Myr of its life in this
state, until the field has dissipated so much that the Ohmic
time scale is comparable with the Hall. Once the Hall and
Ohmic time scales are comparable, higher multipoles
dissipate faster, with the dipole one surviving the longest.
This has important implications for the field structure

of middle-aged NSs whose magnetic field exceeds
5 × 1012 G. Their surface magnetic field should consist
mainly of a dipole and an octupole with a ratio of octupole
to dipole of about 2=3 and opposite polarity, severely
altering the idealized picture of the dipole field. Given that
the spin-down calculation takes into account only the
dipole component of the field, the intensity of the magnetic
field at the polar cap, including the higher multipoles,
should be about 1=3 of the intensity of what the dipole
model predicts, while the equatorial field should be about
2.5 times stronger, constraining the assumed models of the
magnetic field. Fits of thermal profiles of isolated neutron
stars have suggested an offset dipole or multipolar structure
[21]. Weaker magnetic field neutron stars with B≲ 1012 G
could also undergo a Hall-dominated phase of evolution if
the crust has an impurity parameter significantly less than
unity (see Fig. 4 of Ref. [16]), although with a much longer
Hall time scale.
This result disfavors the idea that the Hall effect leads to

turbulent cascade of the magnetic field in neutron star
crusts, as there is indeed an attractor state towards which
the field is trying to relax, which requires the excitement of
a higher order multipole. Additionally, this is an example of
a kinematic physics problem that has an attractor state,
despite the fact that its evolution equation does not arise
from an energy minimization principle. Given that these
results were found in a system where axial symmetry is
assumed, we stress the importance of the development of
3D crust studies, either analytically or numerically, to
investigate whether the attractor persists in 3D. In 3D,
nonaxisymmetric modes are available to participate in a
cascade [7]; on the other hand, in rotating stars, it is
possible to find nonaxisymmetric generalizations of
Ferraro’s law involving isorotation with additional motion
along field lines [22–24].
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