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We introduce a class of noisy quantum cellular automata on a qubit lattice that includes all classical
Markov chains, as well as maps where quantum coherence between sites is allowed to build up over time.
We apply such a construction to the problem of excitation transfer through 1D lattices, and compare the
performance of classical and quantum dynamics with equal local transition probabilities. Our discrete
approach has the merits of stripping down the complications of the open system dynamics, of clearly
isolating coherent effects, and of allowing for an exact treatment of conditional dynamics, all while
capturing a rich variety of dynamical behaviors.
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Quantifying the extent to which quantum coherence
enhances the performance of antennae or communication
systems is a timely [1–19], yet often controversial, subject.
Typically, a classical system is compared to the analogous,
quantized model [12,13,20–22], although such a correspon-
dence is not straightforward when open, dissipative systems
are considered, as it should be in most cases of interest.
In this Letter, we introduce a strictly local model of

energy transfer via a noisy quantum cellular automaton
construction [23,24] on a qubit lattice. Tuning one real
parameter of such a model will allow us to range from a
classical Markov chain, where quantum coherence is
systematically suppressed at each time step of the automa-
ton, to dynamics where quantum coherence is allowed to
build up over time, while keeping, by construction, the
local transition probabilities constant. Thus, a “fair” com-
parison between classical and quantum energy transfer may
be carried out, where the effect of quantum interference
is singled out with no ambiguity. Our model, restricted to
the first excitation subspace, can be studied exactly for very
large systems, also including conditional dynamics due to
measurements (which will model the absorption of the
excitation at the end of the energy transfer process).
The plan of the Letter is as follows. We shall first consider

the problem of constructing a class of one-qubit completely
positive (CP) maps that, in a certain limit, reproduce all
classical Markov transition matrices on dichotomic proba-
bility distributions.Wewill then apply our construction to the
first excitation subspace of a partitioned quantum cellular
automaton structure (whereone-qubitmapswill be applied to
the two-dimensional space spanned by excitations at neigh-
boring sites), obtaining a global dynamics on a lattice which
is capable of describing excitation transfer. We will then
present a study of the performance of classical versus quan-
tummaps, showing by howmuch and under what conditions
does quantum coherence improve the probability of excita-
tion transfer through the lattice. Finally, we shall draw some
conclusions and discuss the outlook of this work.

CP-map representation of classical stochastic maps.—
The most general classical stochastic map on dichotomic
probability distributions, represented by vectors vm ¼
ðm; 1 −mÞT for 0 ≤ m ≤ 1, is represented by a stochastic
matrix of the form

Tp;q ¼
�
1 − p q
p 1 − q

�
with 0 ≤ p; q ≤ 1: (1)

Let us remind the reader that the matrix (and map) Tp;q is
referred to as doubly stochastic if p ¼ q.
Any discrete classical probabilistic process may be

thought of as a particular instance of a quantum process.
Hence, the action of a generic Tp;q on dichotomic prob-
ability vectors may be obtained by considering the action
of a specific class C of completely positive (CP) maps on
“classical” states, by which we mean density operators that
are diagonal in a certain basis of the Hilbert space. Given
the privileged classical basis, the class C of classical CP
maps is comprised of all the CP maps that send diagonal
density matrices into diagonal density matrices. Here, we
give a simple construction which allows one to reproduce
any possible two-dimensional stochastic matrix by consid-
ering a subset of C acting on a one-qubit system.
Diagonal density matrices may be trivially bijectively

mapped into dichotomic probability distributions as per
G∶ϱm ¼ diagðm; 1 −mÞ↦vm ¼ ðm; 1 −mÞT, where we
denoted such a bijection by G. We will conventionally
refer to the parameterm as the probability of populating the
excited state of the qubit, or “excitation probability.” In
practice, the classical basis will be dictated by decoherence
processes, as we will indicate later on. We shall refer to the
map Φξ, with Kraus operators

K0 ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
1; K1 ¼

ffiffiffi
ξ

p
ð1þ σzÞ=2;

K2 ¼
ffiffiffi
ξ

p
ðσz − 1Þ=2; (2)

with 0 ≤ ξ ≤ 1, as the dephasing map (σj for j ¼ x, y, z
stand for the Pauli matrices). The CP map Φ1, whose effect

PRL 112, 170403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
2 MAY 2014

0031-9007=14=112(17)=170403(5) 170403-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.170403
http://dx.doi.org/10.1103/PhysRevLett.112.170403
http://dx.doi.org/10.1103/PhysRevLett.112.170403
http://dx.doi.org/10.1103/PhysRevLett.112.170403


is setting to zero the off-diagonal elements while leaving
the diagonal ones unchanged, will be called “complete,” or
“total” dephasing. Let us also define the amplitude damp-
ing channel Ξη, with Kraus operators

L0;η ¼ ð1þ σzÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
ð1 − σzÞ=2;

L1;η ¼
ffiffiffi
η

p ðσx þ iσyÞ=2;
(3)

with 0 ≤ η ≤ 1. For future convenience, let us extend the
definition ofΞη to negative ηð−1 ≤ η ≤ 0Þ, as the “swapped”
amplitude damping channel, with Kraus operators σxL0;jηjσx
and σxL1;jηjσx.
Let us now proceed by showing two simple statements

concerning the relationship between classical stochastic
maps and single qubit dynamics.
Proposition 1: Any two-dimensional doubly stochastic

mapTp;pmaybe representedondiagonal densitymatricesby
the action of a unitary map followed by complete dephasing.
Proof.— Let Uθ;φ be a generic 2 × 2 unitary parame-

trized as

Uθ;φ ¼
�

cos θ sin θeiφ2

− sin θeiφ1 cos θeiðφ1þφ2Þ

�
; (4)

with 0 ≤ θ ≤ π, φ ¼ ðφ1;φ2Þ and 0 ≤ φ1;φ2 ≤ 2π. Then it
is immediate to see that the action of Uθ;φ on a diagonal
density matrix, with excitation probability m, followed by
total dephasing, is a diagonal density matrix with excitation
probability sinðθÞ2 þ cosð2θÞm. This is analogous to the
action of the stochastic map Tp;p of Eq. (1) on the
probability vector vm ¼ ðm; 1 −mÞT, upon identifying
p ¼ sinðθÞ2. In formulas,

G½Φ1ðUθ;φϱmU
†
θ;φÞ� ¼ Tsin2θ;sin2θvm: (5)

It is hence evident that a proper choice of θ allows one to
reproduce any doubly stochastic map. ▪
Proposition 2. Any two-dimensional stochastic map Tp;q

may be represented on diagonal density matrices by the
action of a completely dephased unitary map, followed by
an amplitude damping channel.
Proof.— As we saw above, the action of a completely

dephased unitary Uθ;φ on a diagonal density matrix ϱm
yields the diagonal state ϱð1−cÞ=2þcm with excitation prob-
ability ð1 − cÞ=2þ cm , where we shortened the notation
by setting c ¼ cosð2θÞ. The action of a (direct or swapped,
as indicated by the sign of η) amplitude damping channel
Ξη on the state ϱð1−cÞ=2þcm leads to another diagonal state
ϱm0 with excitation probability

m0 ¼ cð1 − jηjÞmþ 1þ jηjc − cþ η

2
: (6)

On the other hand, the action of Tp;q on the vector vm gives
a vector vm0, with

m0 ¼ ð1 − p − qÞmþ q: (7)

By comparing Eqs. (6) and (7), one obtains

η ¼ q − p; (8)

cosð2θÞ ¼ 1 − p − q
1 − jq − pj : (9)

In formulas,

G

�
Ξq−p

�
Φ1

�
U1

2
arccosð 1−p−q

1−jq−pjÞ;φϱmU
†
1
2
arccosð 1−p−q

1−jq−pjÞ;φ

���

¼ Tp;qvm: (10)

Clearly, all values of p and q may be reproduced by the
open dynamics we considered by an appropriate choice
of η and θ. ▪
It is apparent that the amplitude damping channel is

needed to produce a bias between the two probabilities p
and q: for p ¼ q, doubly stochastic maps are recovered
without any such channel ðη ¼ 0Þ, in agreement with the
previous proposition.
The cellular automaton model.—Quantum cellular

automata (discrete, translationally invariant, causal evolu-
tions on a lattice) were first envisaged as computational
models [25] and quantum simulators [26], although they
have by now attracted attention both as hardware for specific
quantum information processing tasks [27] and as models
of causal quantum theories, including quantum field theory
[28,29] and quantum gravity [30]. Such aims have focused
on unitary automata, whose extension to more general CP
maps is little explored [31]. Here, we consider a qubit lattice
and employ our embedding of two-dimensional stochastic
maps into dissipative qubit dynamics to define a class of
noisy cellular automata that includes all local, probabilistic
classical dynamics on the lattice, as well as more distinctly
quantum dynamics. It is interesting to note that, conversely,
classical cellular automata were used in the past to model
quantumdynamics in certain semiclassical regimes [32–34].
Let us a consider a one-dimensional qubit lattice of length

N, which is hosting an excitation transfer process (although
our treatment can be extended to higher dimensions). We
shall restrict to the single excitation subspace of the Hilbert
space, spanned by the basis fjni; 1 ≤ n ≤ Ng, where jni
represents the statewith the nth qubit in the excited state and
all the other qubits in the ground state. Let us now define the

CP map ΩðnÞ
η;ξ;θ;φ as the map acting as the composition of a

unitary UðnÞ
θ;φ, a dephasing ΦðnÞ

ξ and an amplitude damping

ΞðnÞ
η on the two-dimensional subspace spanned by jni and

jnþ 1i, and as the identity on the remainder of the single

excitation subspace: ΩðnÞ
η;ξ;θ;φðϱÞ ¼ ΞðnÞ

η ½ΦðnÞ
ξ ðUðnÞ

θ;φϱU
ðnÞ†
θ;φ Þ�,

where ϱ is a density matrix with support in the single exci-
tation subspace.We can then define a noisy quantum cellular
automaton on the lattice as the following map [24,35]

Ωη;ξ;θ;φ ¼ ⊗
leven

ΩðlÞ
η;ξ;θ;φ ⊗

lodd
ΩðlÞ

η;ξ;θ;φ: (11)

Here, the “odd” and “even” prescriptions in the labels realize
a partitioning of the lattice, taking into account the
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noncommutativity of CP maps acting on overlapping sub-
systems: One step of the automaton consists first in applying
the map on disjoint pairs of neighboring qubits, and then in
applying the same operation shifted by one lattice position.
Our latticemay be a ring—inwhich case themapΩN

η;ξ;θ;φ acts
on the state jNi and j1i—or open—in which case the map
ΩN

η;ξ;θ;φ is not applied [36]. Any unitary quantum cellular
automaton may be realized, up to shift operations, by
adopting such a partitioning, based on the iteration of the
samemap between alternate pairs of neighboring qubits [37].
Although no corresponding general theorem exists for noisy
CP maps [38], our maps are by construction causal and,
on infinite lattices, invariant under the squared shift operator,
so that it seems appropriate to maintain the denomination
of (noisy) quantum cellular automata for them [39].
A classical transfer process may be modeled on such a

lattice by a chain of identical stochastic transition matrices
which, in the light of Proposition 2, can be represented by
the CP map Ωη;1;θ;φ acting on diagonal (classical) states,
where the dephasing channel is set to a total dephasing,
with strength ξ ¼ 1. We have hence designed a class of
cellular automata where one can study classical transfer by
setting ξ ¼ 1, and then enter the quantum regime by
decreasing the dephasing strength ξ from 1 to 0. While
still in a sense arbitrary, we argue our model is represen-
tative of the classical to quantum transition in actual
physical systems, in that it enacts such a transition entirely
by changing a dephasing strength, which is the main
decoherence mechanism in any open quantum system. In
practical cases, dephasing results from the coupling with
the environment, which sets the privileged basis.
Given p and q of a classical stochastic transfer process,

one can construct the corresponding class of quantum
cellular automata Ωη;ξ;θ;φ by setting η ¼ p − q (whose sign
will determine the privileged direction of travel of the
excitation along the lattice) and θ ¼ arccos ðð1 − p − qÞ=
ð1 − jq − pjÞÞ=2, and letting ξ vary from the classical
automaton for ξ ¼ 1 to the “most quantum” (where no
dephasing acts and coherent off-diagonal terms are only
suppressed by the amplitude damping) for ξ ¼ 0. The phases
φ1 and φ2 are completely free, as one should expect since
they cannot be determined by the limiting classical process
where they do not appear at all. Such phases do potentially
play a role in applications, as we will see shortly.
Energy excitation transfer.— We can now apply our

model to the study of energy excitation transfer through the
lattice [2–11,13–16] by comparing, at given local transition
probabilities p and q, the performance of a classical process
with that of quantum dynamics where coherent phases are
allowed to develop and interfere along the chain. Note that
the equality of the local transition probabilities ensures that
all the difference between the classical and quantum cases
is down to quantum coherence, in a very specific sense.
We will study energy transfer by assuming the pure initial

state j1i, with a single excitation localized on the first site of
the chain. The excitation absorption by a receptor located at

site jNi and jN=2þ 1i for, respectively, an open chain and a
ring of N sites (taking, for simplicity, N to be even), will be
modeled by a quantum measurement with elements M0 ¼
1 − jNihNj and M1 ¼ jNihNj (replacing N with N=2þ 1
for a ring). The dynamics goes on until outcome 1 occurs,
whereby the excitation is captured at the receptor and the
transfer process stops. We are interested in the total prob-
ability of absorption after t steps of the automaton (see
Supplemental Material [40]). As a preliminary investigation,
we considered the optimal rate of measurement at the
receptor site, in terms of maximizing the absorption prob-
ability. In the classical case (ξ ¼ 1), where the only effect of
measuring 0 is renormalizing the probability distribution, the
optimal rate ismeasuring after every step of the automaton. In
the quantumcase, a failed absorption has the additional effect
of destroying the off-diagonal terms involving the receptor
site: nonetheless, it turns out that in the vast majority of cases
we dealt with (see later) measuring after every step is still the
optimal strategy, with very marginal gains when measuring
every two steps in a few specific cases. In the following, we
will hence always consider absorption measurements per-
formed at each step of the automaton. Although analytical
expressions are cumbersome even for the simplest configu-
rations, the resulting conditional dynamics can be studied
exactly for a very large number of sites.
Let us start by considering an open chain ofN ¼ 64 sites.

The case p ¼ 0.7 and q ¼ 0.5 is illustrated in Fig. 1. The
advantage granted by quantum coherence is manifest, in
that, forφ1 þ φ2 ¼ π, the presence of the off-diagonal terms
of the density matrix increases dramatically the absorption
probability at each step in the early dynamics (reflected in
the increased slope in Fig. 1). Interestingly, after such an
initial boost, systems with stronger quantum coherence are
slower in saturating the integrated probability to 1 thanmore
classical counterparts. Increasing the bias η ¼ p − q enhan-
ces the effect of the amplitude-damping channel, and thus
diminishes the difference between the corresponding quan-
tum and classical cases. In point of fact, note that, when
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FIG. 1 (color online). Integrated probability of absorption thro-
ugh an open chain with N ¼ 64, p ¼ 0.7, q ¼ 0.5, φ1 þ φ2 ¼ π
(the probability only depends on the sum φ1 þ φ2) and various
values of ξ, from classical (ξ ¼ 1, denoted by “Class”) to most
quantum (ξ ¼ 0).
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η ¼ 1, the map becomes classical regardless of the choice of
ξ and other parameters: this is, so to speak, the ballistic limit,
where the excitation is deterministically transferred through
the chain in N − 1 steps. While trivially optimal, this is not
such an interesting regime when modeling stochastic trans-
fer phenomena. Further, notice that, because of the way we
defined our partitioning, any case with p ¼ 1, including the
one with q ¼ 1 that can be obtained by chains of unitary
swap operations, also results in ballistic transfer. The benefit
granted by stronger amplitude damping in our model is
distinct from the seminal cases of noise assistance flagged
up in [7–11], where local dephasing is responsible for
suppressing destructive interference [41]. As we will see,
the latter can also be reproduced within our framework.
Intriguing effects become apparent setting p ¼ q ¼ 0.5,

as reported in Fig. 2(a) for an open chain with optimized
phases (such that φ1 þ φ2 ¼ π). In this instance, the gap
between quantum and classical dynamics is at its widest,
and purely quantum distinctive features emerge. In particu-
lar, the integrated absorption probability shows stationary
points, whereby the instantaneous absorption probability
is zero, followed by sudden increases. This effect, for
which we provide heuristic analytical evidence in the
SupplementalMaterial [40], is amanifestation of destructive
interference due to the off-diagonal terms of the density
matrix, and disappears as soon as any amount of dephasing
is introduced. It is, however, a purely quantum effect, which
could in principle be observed.
Dephasing-assisted transfer is apparent in Fig. 2(b), where

we set parameters as in Fig. 1(a) except for the coherent
phasesφ (also, we scan a different set of values for ξ). In this
case destructive interference is clear in the quantum case
(ξ ¼ 0), where the integrated probability soon encounters
a plateau, and is suppressed as soon as some dephasing noise
is introduced. An optimal value around ξ ¼ 0.05 can be
determinedwith this choice of parameters. This is at variance
with the stationarity encountered for optimized phases,
where each stationary point is followed by a steep ramp
of constructive interference. Our framework is hence capable
of highlighting the dependence of noise assistance on the
phases of coherent interactions (the unitaryU, in our discrete
treatment): for certain choices of phases [such as the one

in Fig. 2(a)], dephasing noise helps only marginally and at
long times (after the initial quantum boost) [42].
The case of a ringwithN ¼ 64 is depicted in Fig. 3(a), and

confirms that the advantage granted by quantum coherence
ismost apparent in the casep ¼ q ¼ 0.5, and tends to vanish
as the difference between p and q increases. The quantum
advantage in the transfer probability critically depends on
the number of qubits N: with more qubits, the effect of
constructive interference becomes more relevant and endur-
ing. This advantage is reminiscent of the speed-up occurring
in random [44] or Hamiltonian [45] quantumwalks—where
by “random” quantum walk we refer to dynamics featuring
a coin Hilbert space—which share similarities with our
approach. For instance, the analogous of Fig. 3(a) for
N ¼ 18 is reported in Fig. 3(b), and shows that the classical
maps surpasses their quantum counterparts (with optimally
chosen phases) after at most 70 time steps.
To summarize, we have introduced a class of causal CP

maps on a qubit lattice, which generalize the notion of
unitary cellular automaton and embed all possible stochas-
tic maps on classical probability distributions on the lattice,
and then applied such a class of noisy automata to contrast
the performance and behavior of classical and quantum
excitation transfer processes. Our discrete model is capable
of highlighting coherent effects, such as noise assistance,
can be applied to very large systems, and allows one to treat
conditional quantum dynamics exactly. Besides, the appli-
cation of our framework may be extended to more general
communication problems, such as quantum and classical
capacities [46] or transfer fidelities along the chain [47–52].
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FIG. 2 (color online). Integrated probability of absorption through
an open chain with N ¼ 64, p ¼ 0.5, q ¼ 0.5, various values of ξ,
from classical (ξ ¼ 1, denoted by “Class”) to most quantum (ξ ¼ 0),
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