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We introduce a scheme where a time-dependent source excites “complex-frequency” modes in uniform
plasmonic heterostructures, enabling complete and dispersionless stopping of light pulses, resilient to
realistic levels of dissipative, radiative, and surface-roughness losses. Using transparent conducting oxides
at telecommunication wavelengths we show how, without increasing optical losses, multiple light pulses
can decay with time precisely at their injection points, unable to propagate despite the complete absence of
barriers in front or behind them. Our results theoretically demonstrate extraordinary large light-deceleration
factors (of the order of 1.5 × 107) in integrated nanophotonic media, comparable only to those attainable
with ultracold atomic vapors or with quantum coherence effects, such as coherent population oscillations,
in ruby crystals.
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The extremely large speed of light is a tremendous asset
but also makes it challenging to control, store, or shrink
beyond its wavelength. Particularly, reducing the speed of
light [1] down to zero is of fundamental scientific interest
[2,3] that could usher in a host of important photonic
applications, some of which are as yet fundamentally
inaccessible. These include cavity-free, low-threshold
nanolasers [4–7], novel solar cell designs for efficient
harvesting of light [8,9], nanoscale quantum information
processing (owing to the enhanced density of states) [7,10],
as well as enhanced biomolecular sensing [6,11].
Until now, complete stopping of light pulses—leading

to their localization in given regions of space, in solid
integrated structures and at ambient conditions—has
been hampered by fundamental difficulties. Ultraslow
light requires strong group-index (ng) resonances, but the
increased damping (compared with gases) at normal
conditions invariably broadens and weakens such
resonances [3]. Certain resourceful schemes, such as
electromagnetically induced transparency (EIT), can
exploit very narrow absorption dips arising from quan-
tum interference effects to drastically slow down light in
ultracold atoms (where damping is minimized), [12]
but their solid-state implementations usually decelerate
light by up to a factor of a few hundreds [13,14].
Furthermore, at the zero group-velocity (zero-υg) point of
an EIT scheme, a light pulse relinquishes its photonic
character by coherently mapping its optical quantum
states to stationary electronic (spin) excitations [3,15].
Light is “stored” in this way [16], but the ultimate goal
of observing and harnessing photons at a zero-υg point is
not completely satisfied—even under extreme conditions
entailing vacuum operation and ultralow temperatures.
Periodic photonic structures offer another route for
slowing down light, essentially via periodic backreflec-
tions by a lattice of scatterers having sizes comparable

to the wavelength [17]. Here, it is structural disorder
that fundamentally limits the attainment of light stop-
ping. Tiny nanometer-scale imperfections destroy the
(theoretically assumed) “perfect” periodicity, leading to
a “smearing out” effect in the attained group indices at
the band edges [18]. Practically, this results in slowing
down factors that normally do not exceed a few
hundreds [19].
We here report on a solid-state configuration leveraging

media with negative electromagnetic parameters [3,20],
whereby an arbitrary number of light pulses can be stopped,
remaining stationary and broadening free at predefined
spatial locations, despite the absence of barriers in front of
or behind the pulses.
Consider the plasmonic heterostructure shown in

Fig. 1(a). The structure supports longitudinally (x) guided,
bound, and leaky eigenmodes. We have calculated the
structure of the complex dispersion relations ωðβÞ (β being
the longitudinal propagation constant) using the transfer
matrix and the argument principle methodology (see the
Supplemental Material [21]). The result of our calculations
for the TM2 complex modes is illustrated in Fig. 1(b). For
modes characterized by real frequency (ω) and complex
wave vector (β) we see that, similar to dielectric or atomic
configurations, the presence of a decoherence mechanism
destroys the singular zero-υg point. However, here, the
same configuration also supports another class of modes
that, as it turns out, fully uphold the light-stopping
condition despite the presence of dissipative losses [see
Fig. 1(b)]. These modes, which are frequency poles of
the complex Green’s function, belong to the complex-
frequency (or complex-time, t), real-wave vector domain
[25,26], but it is not immediately clear how or whether they
can be accessed, separated from a possible simultaneous
excitation of complex-β modes (that do not stop), and
“cleanly” observed.
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We have found a configuration, illustrated schematically
in Fig. 2(a), that manages to simultaneously fulfill the
above requirements. We use a silicon slab of thickness
290 nm, bounded by a low-loss plasmonic material (indium
tin oxide, ITO) [27]. The upper ITO cladding layer, through
which the injection of the light pulses into the middle
Si layer is performed, has a finite thickness of 500 nm. At
near-infrared wavelengths (1.55 μm) and for p-polarized
light, the (real part of the) permittivity ε of the ITO layers is
negative, thereby providing the required light-deceleration
and stopping mechanism [28,29].
More specifically, in our time-domain excitation where

the boundary conditions at the excitation plane do not fix

the frequency to a real value, the evanescent incoupling of a
light pulse into the lossy plasmonic slab conserves the
reality of the wave vector, allowing for the selective
excitation of complex-ω states at the (singular) zero-υg
point. We expect that in the β ¼ 0 (quasistatic) region the
bands of the supported modes become flat (υg ¼ 0) [30];
therefore, to minimize group-velocity dispersion and to
make the desired band as flat as possible at a finite-β zero-
υg point, such a point must be brought as close as possible
to the β ¼ 0 region. Figure 1(b) shows that the design of the
above ITO/Si/ITO heterostructure indeed accomplishes this
goal, supporting a bulk complex-ω mode with a zero-υg
point on the left-hand side of the air light line. In addition

FIG. 2 (color online). (a) Schematic illustration of the configu-
ration used for obtaining complex-ω stopping of light. The
structure, operating at telecommunication wavelengths, is made
of a Si slab bounded by two ITO layers, with the upper one (right)
having a finite thickness (here not finite for illustrative purposes).
The excited complex-ωmode is weakly leaky at its zero-υg point;
hence, there is no need to use a prism. The incident light beams
(white), being side by side, directly excite the complex-ω
mode at its zero-υg point at different spatial locations along the
waveguide. Rather than being guided along the structure, the
excited pulses (in colors) remain stopped (decaying with time at
their injection points) without diffusing and broadening at late
times. (b)–(d) Full-wave finite-difference time-domain (FDTD)
calculations of the time evolution of light pulses injected inside
the light-stopping configuration of (a). In all cases the results are
recorded on the vertical plane (translucent) cutting through the
middle layer. (b)Whenpointbof thedispersiondiagramofFig.1(b)
is hit (where the group velocity is nonzero), a pulse incoupled
into the plasmonic structure moves away from its initial point,
both decaying and broadening with time. (c) Shown here are four
pulses incoupled into the plasmonic heterostructure at its zero-υg
point [see also Fig. 2(a)]. The pulses remain stopped, without
broadening, for more than 130 fs. (d) The pulses in (c) can also be
brought closer together—up to the diffraction limit—since the
structure is completely uniform, and the localization is not aided
by disorder or a cavitylike action. In both (c) and (d) the results
have been recorded for times t > 1.05 ps [cf. Fig. 3(a)].

FIG. 1 (color online). (a) Schematic illustration of the TM2

leaky (L), bound (B), and radiation (R) modes of the deployed
plasmonic heterostructure. (b) Dispersion diagram of the TM2

complex-ω (blue) and complex-k (red and green) modes of the
ITO/Si/ITO plasmonic heterostructure. Solid lines show the real
parts of the frequency [fr ¼ Refωg=ð2πÞ] and the longitudinal
propagation constant (βr ¼ Refβg), while the dashed lines show
the corresponding imaginary parts (fi ¼ Imfωg=ð2πÞ, βi ¼
Imfβg). The complex-ωmode is associated with temporal losses,
and the two complex-k modes with spatial losses. Note how only
the complex-ω state retains the zero-υg point at point a. For the
permittivity of ITO we use the experimental Drude parameters of
[27], i.e., ϵ∞ ¼ 4, ωp ¼ 3.13 × 1015 rad=s, Γ ¼ 1.07 × 1014 s−1,
while for Si we have εSi ¼ 11.68. Note that the zero-υg point a of
the complex-ω state is on the left-hand side of the air light line
(black solid), indicating that the mode is therein weakly leaky.
A further zero-υg point occurs at β ¼ 0, making the complex-ω
band very flat in the region around a.
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to low group-velocity dispersion and preservation of the
light-stopping point (in the presence of losses), this weakly
leaky mode features two further favorable characteristics.
First, since β was designed to be finite but small at the
zero-υg point, the effective index neff ¼ β=k0 of the mode
therein turns out to be smaller than unity: neff ¼ 0.3 < 1.
Consequently, the wavelength λeff inside the structure
becomes larger than the free space one (λ0 ¼ 1.55 μm),
which further diminishes the effect of nanometer-scale
surface roughness. Second, since the mode at the zero-υg
point is (weakly) leaky, there is no need to utilize a prism
to excite it from air, thereby considerably alleviating the
realization of the scheme.
To further illustrate these points, Figs. 2(c)–(d) illustrate

the time evolution of four light pulses evanescently coupled
into the above plasmonic heterostructure by four corre-
sponding exciting beams. The incident free-space wave-
length was λ0 ¼ 1.55 μm (ω ≈ 1.2 PHz) and the angle of
incidence was θ ¼ 17.6 °, both selected such that precisely
the zero-υg point a in Fig. 1(b) was hit. We see from
Fig. 2(c) that the four light pulses are completely stopped;
they decay with time, without propagating and broadening.
From Fig. 1(b) the e−1 lifetime of each pulse is calculated
to be 28.4 fs, while the time taken until the pulses are
completely absorbed is approximately 131 fs, in agreement
with the FDTD calculations of Fig. 2(c). By contrast, when
the angle of incidence of an exciting pulse is such that
point b in Fig. 1(b) is hit (where υg ≠ 0), the pulse injected
into the heterostructure propagates away from its starting
point, decaying but also dispersing (broadening) with time
[Fig. 2(b)], as expected. Importantly, while the deceleration
factor (ng) from point b (nbg ≈ 6.6) to point a (nag → ∞)
increases dramatically, the temporal losses increase by
no more than a factor of 2 (from 2.4 × 1013 s−1 to
3.6 × 1013 s−1). This crucial aspect, together with the fact
that the lifetimes at the stopping point (28.4 fs and 131 fs)
are typical nanoplasmonic ones [31], suggests that a wealth
of applications within this field should also be possible
in the stopped-light regime. Note, further, from Fig. 2(d)
that since the herein observed localization is not a cavity-
or disorder-aided localization, the optical pulses can be
injected and stopped at any point along the structure, as
well as brought tighter together—up to the diffraction limit.
In Fig. 2(d) the four exciting beams (not shown) were
brought closer together, so that the four generated pulses
inside the slab were also correspondingly tighter together.
The dynamics of the light-stopping mechanism are

illustrated in Fig. 3(a), showing an exemplary plot of hxi
and σ (see the Supplemental Material, Sec. 4 [21]) for a
single pulse injected close to the zero-υg point. We see that
when the source (blue line) is switched off at t ¼ 0.8 ps,
it causes both hxi and σ to undergo a transitory behavior
(for 0.8 ps < t < 1.05 ps), until they find their new stable
values. In the region (t > 1.05 ps) where the immobilized
pulse decays freely at its slightly new position, it can be

seen (inset) that the center-of-energy position propagates
just 2 pm in 100 fs (a velocity of ∼20 ms−1) proving that
incredibly low velocities and ultralarge group indices (ng of
the order of 1.5 × 107) are attainable even in the presence
of realistic metallic losses. Further, we find that the pulse
only broadens by 0.4 nm; i.e., it is not only immobilized
but also does not diffuse or broaden with time. In Fig. 3(b)
we present a comparison between the FDTD-calculated
center-of-energy velocity [21,32] with both the analytically
calculated complex-ω- and complex-k-mode group veloc-
ities. We find an excellent agreement between the FDTD
and the complex-ω calculations, showing clearly that in the
time domain it is the complex-ω rather than the customary
complex-k description that correctly captures the evolution
of ultraslow and stopped light pulses in lossy systems. We

FIG. 3 (color online). (a) FDTD calculations of the variations
with time of the mean energy position hxi of the excited pulse
inside the waveguide (red). Also shown is the temporal variation
of the pulse’s width σx (black) and the source time signal (blue).
Note how, after a transient interval (0.8–1.05 ps), the pulse
becomes stopped (red line for t > 1.05 ps), without broadening
with time (black line for t > 1.05 ps). The two insets show, in
more detail, the temporal variations of the two curves (for
t > 1.05 ps) from their equilibrium values at t ¼ 1.05 ps.
(b) Comparison between analytically (lines) and FDTD (sym-
bols) calculated group velocity, vg, of the TM2 complex-ω and
complex-k modes, showing unambiguously that in the time
domain it is the complex-ω mode that is excited and attains
zero group velocity.
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emphasize that the attained lifetimes at the stopping point
(e−1 lifetime 28.4 fs, and 131 fs for full absorption) are
typical nanoplasmonic ones [31], suggesting that approach-
ing the stopping point does not impractically increase
losses. For the sake of completeness, we have also
calculated that 99% of the total losses are Ohmic losses,
and only 1% is due to radiation losses. However, we should
remark that the efficiency of the stopped-light pulses

generation is currently low, as most of the incident light
(≈99%) is either reflected or absorbed. The amplitude
of the stopped pulses can be increased either by the use of
gain media [6,7] or by switching off the pump faster.
Finally, we examine the effect of realistic levels of

surface roughness [33,34] on the light-stopping ability of
the plasmonic heterostructure. To this end, we introduce
random variations in the permittivities of the FDTD grid
cells surrounding both the Si/ITO and the air/ITO inter-
faces. The magnitude of the roughness’ peak-to-peak
variation follows a normal distribution. We investigated
the realistic cases of surface roughness rms values of 0.5, 1,
and 3 nm (peak-to-peak values, Δ=2, are four times those
values) [33,34], and in each case we recorded with high
precision the temporal evolution of the center of energy hxi
of an incoupled pulse for various angles of incidence
(Fig. 4, right column). From the right panel of Fig. 4(a),
we see that in the absence of roughness the incoupled pulse
remains exactly immobilized when it is injected inside the
heterostructure with an angle θc ∼ 17.6 °. For angles �4 °
around that critical angle, the pulse moves forwards or
backwards, respectively. When roughness of rms value
0.5 nm is introduced [Fig. 4(b)] we find that, importantly,
the pulse retains its shape [i.e., its envelope is not broken
into random pulsations (see left panel)] and for a range of
angles around �4 ° the pulse moves coherently and with a
constant velocity either forwards or backwards. Thus, there
still is a critical angle, within the cone in the right-hand
panel of Fig. 4(b), for which the pulse can be completely
stopped. When the roughness rms value increases to 1 nm
[Fig. 4(c)], we find that for all incidence angles around�4 °
the pulse moves backwards with a constant velocity [the
curves in the right-hand panel of Fig. 4(c) remain straight
lines], as the angles cone has now moved downwards,
below hxi ¼ 0; hence, in this case, too, a larger, positive
angle of incidence is required for the injected pulse to be
stopped. By contrast, when the rms roughness increases
further to 3 nm [Fig. 4(d)], the pulse envelope is broken
due to scattering of the energy at the rough interfaces
(visible in the x component of the Poynting vector; left
panel) and the center of energy no longer moves with a
constant velocity (right panel) but is only dependent on the
local roughness topology.
The simplicity of the final design, together with the

gigantic enhancement of the group refractive index
(∼15 × 106) and the minor increase of optical losses (by
a factor less than 1.4), make the structure appealing for
a host of nanoplasmonic applications. Particularly, the
enhancement of the density of states in the region around
a flat band is expected to enable ultra-high-efficiency
photovoltaics [35], as well as to give rise to strong
interactions between quantum emitters and the plasmonic
nanostructure [6,7]—the cornerstone of strong optical
nonlinearity. We anticipate that this might be extendable
potentially even to the single-photon level [10], allowing

FIG. 4 (color online). (a)–(d) (left column) Two-dimensional
(xz-plane) spatial distribution of the magnetic field component
(Hz) and Poynting flux (Sx) of the excited light pulse for different
rms amplitudes of surface roughness (rms ¼ 0–3 nm). In the
right column, shown are the temporal variations of the mean
energy position hxi of the excited pulse, inside the waveguide, for
illumination angles of the exciting light beam between −4 ° and
þ4 °, compared with the “critical” angle (for which the pulse
stops in the smooth waveguide). For rms roughness up to 1 nm,
the pulse travels with a constant velocity (all hxi vs t curves are
straight lines) and a clear angular dependency, thus retaining a
critical angle (shifted with respect to the smooth case) for which
the pulse can be completely stopped. By contrast, larger degrees
of surface roughness [rms ¼ 3 nm, (d)] completely change the
nature of the pulse through backreflections, destroying the zero
group velocity point.
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for nonlinear quantum-optical logic operations on truly
nanoscopic scales.
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