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We derive the field correction to the Berry curvature of Bloch electrons, which can be traced back to a
positional shift due to the interband mixing induced by external electromagnetic fields. The resulting
semiclassical dynamics is accurate to second order in the fields, in the same form as before, provided that
the wave packet energy is derived up to the same order. As applications, we discuss the orbital
magnetoelectric polarizability and predict nonlinear anomalous Hall effects.
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The response of Bloch electrons to external fields has
been a central topic in solid state physics. Because of the
Berry curvature of Bloch states, the semiclassical dynamics
acquires a noncanonical structure [1–3]. This is manifested
as an anomalous velocity and a modification of the phase-
space density of states, with important consequences on the
thermodynamic and transport properties [2,4–6]. Together
with a first order correction to the band energy due to the
orbital magnetic moment, the Berry curvature provides the
essential ingredient for a full theory of the electron response
to first order in external fields.
However, response functions such as electric polariz-

ability, magnetic susceptibility, and magnetoelectric polar-
izability would require a theory that is accurate up to
second order in external fields. The difficulty in establish-
ing this type of theory originates from the unboundedness
of the perturbative Hamiltonian. Blount pioneered the work
of systematically extending semiclassical theory up to
second order by using phase-space quantum mechanics
[7]. However, his method uses variables which are not fully
gauge invariant with respect to the phase choice in the basis
Bloch states, rendering it difficult to understand the
physical meaning of his results, especially so because of
some unresolved gauge issues [8].
In this Letter, we present a second order semiclassical

theory for Bloch electrons under uniform electromagnetic
fields in terms of physical position and crystal momentum
which are fully gauge invariant. A central concept is a gauge-
invariant positional shift due to field induced interband
mixing. It leads to a field correction to the Berry curvature
and modifies the relationship between the physical position
and crystal momentum with the canonical ones. Remarkably,
the resulting equations of motion up to second order still retain
the same form as in the first order theory, provided that the
band energy is also corrected to second order in the fields.
The field induced positional shift of Bloch electrons

has profound implications. It is solely responsible for the

cross-gap part of the orbital magnetoelectric polarizability
[9–14]. Moreover, its resulting field correction to the Berry
curvature also leads to nonlinear anomalous Hall effects,
with a Hall conductivity proportional to an external electric
or magnetic field. The electric nonlinear anomalous Hall
conductivity is intimately related to the orbital magneto-
electric polarizability and requires the system to have both
time reversal and spatial inversion symmetry breaking. The
magnetononlinear anomalous Hall effect does not have such
symmetry restrictions, and it competes with the ordinary
Hall effect in relatively dirty samples. Besides these two
well-analyzed applications, our complete second order
semiclassical theory also provides straightforward methods
to evaluate magnetic susceptibility, electric polarizability,
magnetoresistance, intrinsic thermoelectric current, etc. All
results from our theory can be easily evaluated in the first
principles calculations to be compared with experiments.
Positional shift.—The basic idea of the semiclassical

theory is to study the evolution of a wave packet con-
structed from a single Bloch band (labeled by the subscript
0, and we focus on the Abelian case for simplicity). One
starts from the local Hamiltonian obtained from the full
quantum Hamiltonian by evaluating the gauge potentials at
the center of mass position rc of the wave packet
Ĥcðp̂; q̂Þ ¼ Ĥ0ðp̂þ 1

2
B × rc; q̂Þ þ E · rc, where Ĥ0ðp̂; q̂Þ

is the unperturbed Hamiltonian, p̂ and q̂ are momentum
and position operators, and we have set e ¼ ℏ ¼ 1 to
simplify notations. In the first order semiclassical theory,
the wave packet is constructed by superposing the Bloch
eigenstates eiq·pju0ðpþ 1

2
B × rcÞi of this local Hamiltonian

with the crystal momentum p centered around some point
pc, satisfying the self-consistency requirement that the
position expectation value of the wave packet coincides
with the presumed value rc. A noncanonical geometry of
the semiclassical dynamics emerges in the equations of
motion [5] for the physical position rc and the gauge-
invariant crystal momentum kc ¼ pc þ 1

2
B × rc. This
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involves the Berry curvature and the orbital magnetic
moment in the unperturbed Bloch band, which are neces-
sary and sufficient to make the dynamics and its quantum
extension accurate to first order in external fields [1].
In the second order theory, we need the first order

correction ju00i to the unperturbed band ju0i by the gradient
perturbation Ĥ0 ¼ ð1=4mÞB · ½ðq̂− rcÞ× V̂− V̂× ðq̂− rcÞ�þ
E · ðq̂− rcÞ to the local Hamiltonian Ĥc, where V̂ ¼
−i½q̂; Ĥ0� is the velocity operator. Based on the perturbed
band, the wave packet now acquires a shift in its center of
mass position given by a0 ¼ hu0ji∂pju00i þ c:c. It corre-
sponds to a first order correction to the Berry connection
a ¼ hu0ji∂pju0i of the unperturbed band but is gauge
invariant, as can be easily checked by using the orthogon-
ality between ju00i and ju0i. Therefore, it is a physical
quantity and represents the shift of the wave packet center
due to external fields. Indeed, a0 transforms as a spatial
vector under symmetry operations; e.g., it is odd under
spatial inversion and even under time reversal. Furthermore,
it should be noted that a0 is a periodic function of the lattice,
which does not cause any macroscopic charge density
gradient; hence, it will not affect the electron’s chemical
potential profile. This positional shift is the central concept
of our theory.
Following the standard perturbation scheme [15], we can

derive the following explicit formula for the positional shift
(of band 0) in terms of the unperturbed Bloch bands and
external fields:

a0i ¼ FijBj þGijEj; (1)

where

Fij ¼ Im
X
n≠0

ðViÞ0nðωjÞn0
ðε0 − εnÞ2

;

Gij ¼ 2Re
X
n≠0

ðViÞ0nðVjÞn0
ðε0 − εnÞ3

;

(2)

with ωn0 defined as

ðωjÞn0 ¼ −iϵjkl
X
m≠0

½ðVkÞnm þ ðvkÞδnm�ðVlÞm0

εm − ε0
: (3)

Here, ε0, εn, and εm are band dispersions for bands 0, n, and
m, respectively; i, j, k, and l refer to the spatial compo-
nents; ϵjkl is the antisymmetric tensor; vl ¼ ∂pl

ε0 is the
group velocity of band 0; and ðVkÞnm is the matrix element
of the velocity operator. Here and hereafter, summation is
implied over repeated spatial indices. Since a0 contains the
interband velocity, it is not a single-band property. All the
quantities in Eq. (2) can be readily evaluated in first
principles calculations.
To illustrate the positional shift, we consider a generic

two-band model Hamiltonian with

Ĥ0 ¼ h0 þ h · σ; (4)

where σ is the vector of Pauli matrices and h’s have
arbitrary dependence on the crystal momentum. The energy
band dispersion is ε� ¼ h0 � h. Assume the two bands are
fully gapped with h ≠ 0. The positional shift for the lower
band can be calculated from Eqs. (1) and (2) with

Fij ¼ −
gikϵklj∂pl

h0
4h

−
1

8
ϵjklΓlki; Gij ¼ −

1

4h
gij;

(5)

where gik ¼ ∂pi
n · ∂pk

n (with n ¼ h=h) is the quantum
metric of the band and Γlki ¼ 1

2
ð∂pi

glk þ ∂pk
gli − ∂pl

gkiÞ
is the corresponding Christoffel symbol [16]. Like the
Berry curvature, the quantum metric is also a geometric
physical quantity, which defines the infinitesimal distance
in the Hilbert space on the Brillouin zone. Meanwhile, the
Christoffel symbol defines the affine geometry of the
Brillouin zone [16]. They together make the Brillouin zone
a Riemannian manifold. It has been proposed that the
quantum metric could be probed by measuring the current
noise spectrum [17]. Our result shows that g and Γ are also
closely connected with the positional shift and hence might
be probed in second order effects.
Second order semiclassical theory.—To see how the

positional shift enters the second order semiclassical
dynamics, we derive the effective Lagrangian for the wave
packet dynamics [15]:

L ¼ −ðrc − a − a0Þ · _kc −
1

2
B × rc · _rc − ~ε; (6)

where kc ¼ pc þ 1
2
B × rc is the gauge-invariant crystal

momentum and ~ε is the semiclassical energy accurate to
second order (see a discussion of ~ε in the Supplemental
Material [15]). In deriving L, the crystal momentum p for
each Bloch component of the wave packet has been
integrated out, so quantities such as a and a0 here are
now functions of kc, instead of (pþ 1

2
B × rc).

One direct consequence of the positional shift is that the
Berry curvature Ω now acquires a field correction given by
Ω0 ¼ ∂ × a0. (Here and hereafter, the partial derivative ∂ is
with respect to kc unless being explicitly pointed out
otherwise.) Surprisingly, with this modified Berry curva-
ture ~Ω ¼ Ωþ Ω0 and the second order wave packet energy
~ε, the Euler-Lagrange equations of motion have the same
form as in the first order theory [5,15]:

_rc ¼
∂ ~ε
∂kc −

_kc × ~Ω; (7)

_kc ¼ −E − _rc × B: (8)

The force equation remains the same as before, and the
velocity equation now involves the modified quantities with

PRL 112, 166601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

25 APRIL 2014

166601-2



field corrections. Similar to the first order theory [2], the
phase-space density of states has a correction factor
D ¼ 1þ B · ~Ω, which is now accurate to second order
in the fields. It is important to note that even though the
Berry curvature is corrected, the Chern number, which is
the integral of Berry curvature over the Brillouin zone, is
not affected. This is because a0 is well defined and periodic
in the Brillouin zone; hence the integral of its curl over the
entire zone necessarily vanishes.
The positional shift also modifies the relationship

between the physical variables (rc, kc) and the canonical
variables (q, p) [1]. These relations are important for
requantizing the semiclassical theory and are directly
related to physical quantities such as charge polarization
discussed in the following. As detailed in the Supplemental
Material [15], we follow the procedure in Ref. [1] and
obtain that

rc ¼ qþ aþ 1

2
ðB × a · ∂pÞaþ

1

2
Ω × ðB × aÞ þ a0; (9)

kc ¼ pþ 1

2
B × qþ B × ðrc − qÞ: (10)

Note that in Eqs. (9) and (10), the argument for a and a0 is
pþ 1

2
B × q. It was previously thought that the first four

terms on the right-hand side of Eq. (9) would be sufficient
to first order in the fields [1], but now one observes that this
is incomplete without the positional shift a0.
Orbital magnetoelectric polarizability.—In the absence

of external fields, the polarization from electrons in a filled
band is given by the integral of the Berry connection a
[18,19]. From a semiclassical point of view, a magnetic
field Bmodifies this formula in two ways: (1) the density of
states in the integral should contain the factorD ¼ 1þ B · ~Ω
and (2) the Berry connection a should be replaced by
aþ ðB × a · ∂pÞa=2þΩ × ðB × aÞ=2þ a0 according to
the relationship between the physical position and the
canonical position in Eq. (9). Combining these modifi-
cations up to first order in the magnetic field and rewriting
them in terms of the gauge-invariant crystal momentum
kc, we obtain the polarization P0 that is first order in the
B field:

P0 ¼ −
Z

d3k
ð2πÞ3

�
1

2
ðΩ · aÞBþ a0

�
; (11)

where the integral is over the Brillouin zone and we drop
the subscript c of momentum k for simple notations.
The first term in Eq. (11) is the Abelian Chern-Simons

form, which plays a central role in the classification of
three-dimensional topological insulators [10,20–25]. It is
also derived in a more general setting where the crystal
periodicity is not required [26]. It only involves the Berry
connection and Berry curvature of the unperturbed band
and can be derived within the framework of the first order

semiclassical theory [13,27]. The additional term from the
field induced band mixing was envisioned in Ref. [27], but
its validation had to wait for a full quantum perturbation
treatment in Ref. [14]. We now see that this additional term
actually comes in the nice form of the positional shift
integrated over the Brillouin zone. Our result agrees exactly
with the full quantum result, confirming the reliability of
our semiclassical theory.
Since the topological part [the first term in Eq. (11)] is

quantized and well understood [10,20–26], we focus on the
magnetoelectric polarization due to the positional shift,
which requires broken time reversal and spatial inversion
symmetry [14]. To show its connection with the nonlinear
anomalous Hall effect discussed later, we consider the two-
band model in Eq. (4), in which the second term in Eq. (11)
for the lower band gives P0

i ¼
R
GiBd3k=ð2πÞ3, where

G ¼ ðẑ · ∂h0 × ∂njÞ∂nj=ð4hÞ, with ẑ being the direction
of the magnetic field. We note that, if h0 is a constant, G
would vanish. This is consistent with previous observations
that a nonzero orbital magnetoelectric polarization must
require particle-hole symmetry breaking of the system [14].
A minimal lattice model that realizes this effect can be
constructed in 2D. Notice that for the model equation (4) in
2D, the topological part of magnetoelectric polarization,
i.e., the first term in Eq. (11) vanishes [27]; hence, only the
contribution from a0 exists. Moreover, since a0 transforms
as a spatial vector and it must lie in the plane, in general, it
must vanish if the system has in-plane rotational symmetry.
And, if in-plane mirror symmetry exists, P0 would be
restricted to be along the normal direction of the mirror line
[see Fig. 1(a)]. These symmetry constraints provide guid-
ance for the construction of the lattice model, as discussed
in the Supplemental Material [15].
Nonlinear anomalous Hall effect.—In the semiclassical

approach, the transport current is given by j ¼
−
R
_rcfðkÞDd3k=ð2πÞ3, where fðkÞ is the distribution

function. Because our theory is accurate up to second
order in external fields, it allows us to evaluate the non-
linear current response. Here, we focus on the intrinsic

FIG. 1 (color online). (a) Magnetoelectric polarization and
(b) the electric nonlinear anomalous Hall effect in a 2D system
with a mirror line along the x axis. In (a), the mirror symmetry
requires the zeroth order polarization P0 to be along the mirror
line and requires the first order P0 to lie in the perpendicular
direction. In (b), the linear anomalous Hall current vanishes due
to the mirror symmetry, but the nonlinear anomalous Hall current
can exist along the mirror line if the electric field is applied along
the perpendicular direction.
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contribution to the Hall current, which is purely from the
band structure effects without disorder scattering [28–34].
Under fixed temperature and uniform electromagnetic
fields, we obtain the intrinsic current j0 that is second
order in external fields:

j0 ¼ E ×
Z

½v × a0 þΩðB ·mÞ� ∂f0∂ε0
d3k
ð2πÞ3 : (12)

Or, more explicitly, we can write

∂2j0i
∂Ej∂El

¼
Z

ðviGjl − vjGilÞ
∂f0
∂ε0

d3k
ð2πÞ3 ; (13)

∂2j0i
∂Ej∂Bl

¼
Z

ðviFjl − vjFil þ ϵijkΩkmlÞ
∂f0
∂ε0

d3k
ð2πÞ3 ; (14)

where f0 is the equilibrium Fermi-Dirac distribution
function and m ¼ − 1

2
Imh∂u0j × ðε0 − ĤcÞj∂u0i is the

orbital magnetic moment [4]. The effects associated with
the two response functions in Eqs. (13) and (14) shall be
termed as the electric nonlinear anomalous Hall effect and
the magnetononlinear anomalous Hall effect, respectively.
We call such currents anomalous because they are not
caused by the Lorentz force, as in the case of the ordinary
Hall effect. These response functions can be directly
evaluated by first principles methods. From Eq. (12), we
see that the intrinsic nonlinear current is purely of Hall type,
and the appearance of ∂f0=∂ε0 shows that it is a Fermi
surface property. The second term in the square brackets of
Eq. (12) comes from a correction of the band energy which
could be envisioned from an naive extension of the first
order theory and has been discussed in the study of
anomalous Hall transport in multivalley systems [35].
The first term comes from the correction of the Berry
curvature due to the positional shift found in this work,
which is quite nontrivial. Moreover, we note that for in-
phase oscillating E and B fields, the first order intrinsic
anomalous Hall response vanishes upon the time average;
hence, the dc intrinsic anomalous Hall current would be
dominated by the nonlinear response j0.
First, let us consider the electric nonlinear anomalous

Hall effect with B ¼ 0. Then, the intrinsic nonlinear Hall
conductivity σ0xy ¼ ∂jx=∂Ey is proportional to the electric
field and only the term with positional shift in Eq. (12)
contributes. For the generic two-band model [Eq. (4)], the
result is σ0xy ¼ −

R ð∂f0=∂ε0ÞG · Ed3k=ð2πÞ3. Interestingly,
it also involves the G vector found for the orbital mag-
netoelectric polarizability. In fact, the two effects have the
same symmetry properties, requiring both time reversal and
spatial inversion symmetries to be broken in the system.
This nonlinear anomalous Hall current will dominate if the
corresponding linear current vanishes due to symmetry
constraints. For example, if a 2D system has a mirror line
perpendicular to the electric field, then the linear intrinsic

current vanishes because the (unperturbed) Berry curvature
has a sign change under mirror operation, while the
nonlinear current could be finite [see Fig. 1(b)].
In comparison, the magnetononlinear anomalous Hall

effect does not have such a stringent symmetry constraint.
In fact, since the current transforms in the same way as the
product of electric and magnetic fields under both time
reversal and spatial inversion, this is much easier to realize
in real systems. Furthermore, if the system itself has time
reversal symmetry (neglect the small Zeeman splitting due
to the external magnetic field), both the linear anomalous
Hall effect and the electric nonlinear anomalous Hall effect
vanish, and the magnetononlinear anomalous Hall effect
dominates. For the two-band model, we find that

σ0xy ¼
Z

d3k
ð2πÞ3

∂f0
∂ε0

�
gij
4h

ðẑ × vÞiðB × ∂h0Þj

−
1

8
ðẑ × vÞiϵkljBkΓjli þ hðΩ · ẑÞðΩ · BÞ

�
; (15)

where v ¼ ∂ðh0 − hÞ and Ω ¼ 1
2
ϵijkni∂nj × ∂nk is the

unperturbed Berry curvature. As a concrete example, let
us consider a 2D gapped Dirac model with h0 ¼ 0 and
h ¼ ðvkx; vky;ΔÞ, which is widely used to study systems
such as symmetry-breaking graphene, MoS2, topological
insulator surfaces with time reversal symmetry breaking,
and topological insulator thin films [20,21,36,37]. Here, v
is the Fermi velocity and Δ is the gap parameter.
Considering an in-plane electric field and an out-of-plane
magnetic field, we obtain that (at zero temperature)

σ0xy ¼ −e3
v2ðv2p2

F þ 2Δ2Þ
16πðv2p2

F þ Δ2Þ2 B; (16)

where pF ¼ ℏkF is the Fermi momentum, and we assume
the Fermi level is in the upper band. We have recovered the
factors e and ℏ in Eq. (16). We point out that for MoS2 or
graphene (with inversion symmetry breaking) with two
inequivalent valleys K and K0 connected by time reversal
symmetry, the contributions to this magnetononlinear
anomalous Hall effect from the two valleys in fact add
together rather than cancel each other, as in the first order
response [38].
Besides this effect, note that due to the magnetic field,

there is also the ordinary Hall response due to Lorentz
force. Both effects have linear B dependence in the trans-
port coefficient. However, there is an important difference.
The ordinary Hall conductivity is proportional to the square
of relaxation time (or longitudinal conductivity), while our
intrinsic nonlinear conductivity does not have such extrin-
sic dependence. On the other hand, in terms of the Hall
resistivity, the ordinary effect has an intrinsic looking form
ρordxy ¼ −B=ne, where n is the carrier density, while intrinsic
nonlinear Hall resistivity acquires a dependence on
the square of the longitudinal resistivity. This is well

PRL 112, 166601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

25 APRIL 2014

166601-4



understood as a result of matrix inversion between the
conductivity and resistivity tensors with the usual condition
that longitudinal coefficients are much bigger than the
transverse ones. Therefore, from this discussion, like the
linear anomalous Hall effect, our nonlinear effect would
become important for more resistive samples.
The argument above can be quantified for the gapped

Dirac model by calculating the ratio between the two
contributions explicitly. From Eq. (16), we have

ρ0xy
ρordxy

¼
�
ρxx

e2

4h

�
2
�
1 −

�
Δ
εF

�
4
�
; (17)

where εF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2

F þ Δ2
p

is the Fermi energy, ρ0xy ≃
σ0xyρ2xx is obtained by inverting σxy

0, and ρxx is the
longitudinal resistivity. In Eq. (17), the first factor is
proportional to ρ2xx, which is universal (model indepen-
dent). The second factor shows a simple dependence on
Fermi energy for the gapped Dirac model: it vanishes at the
band bottom and quickly saturates with increasing Fermi
energies. Our predictions can be tested by the standard Hall
bar measurement on single layer MoS2 or Bi2Se3 thin films
with longitudinal resistivity tuned by temperature, film
thickness, or doping. The difference in the scaling in terms
of the longitudinal resistivity, as shown in Eq. (17), can be
used to disentangle the ordinary Hall effect and the non-
linear anomalous Hall effect.
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