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A comprehensive description of all single-particle properties associated with the nucleus 40Ca is
generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all
relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials
yields equivalent elastic differential cross sections as compared to local versions but changes the absorption
profile as a function of angular momentum suggesting important consequences for the analysis of nuclear
reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle
number and the nuclear charge density. Spectral properties implied by (e, e0p) and (p, 2p) reactions are
correctly incorporated, including the energy distribution of about 10% high-momentum nucleons,
as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide
a substantial contribution to the energy of the ground state, indicating a residual attractive contribution
from higher-body interactions for 40Ca of about 0.64 MeV=A.
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The properties of a nucleon that is strongly influenced by
the presence of other nucleons have traditionally been
studied in separate energy domains. Positive energy nucle-
ons are described by fitted optical potentials mostly in local
form [1,2]. Bound nucleons have been analyzed in static
potentials that lead to an independent-particle model modi-
fied by the interaction between valence nucleons as in
traditional shell-model calculations [3,4]. The link between
nuclear reactions and nuclear structure is provided by
considering these potentials as representing different energy
domains of one underlying nucleon self-energy. This idea
was implemented in the dispersive optical model (DOM) by
Mahaux and Sartor [5]. By employing dispersion relations,
the method provides a critical link between the physics
above and below the Fermi energy with both sides being
influenced by the absorptive potentials on the other side.
The DOM provides an ideal strategy to predict proper-

ties for exotic nuclei by utilizing extrapolations of these
potentials towards the respective drip lines [6,7]. The main
stumbling block so far has been the need to utilize the
approximate expressions for the properties of nucleons
below the Fermi energy that were developed by Mahaux
and Sartor [5] to correct for the normalization-distorting
energy dependence of the Hartree-Fock (HF) potential. By
restoring the proper treatment of nonlocality in the HF
contribution, it was possible to overcome this problem [8]
although the local treatment of the absorptive potentials
yielded a poor description of the nuclear charge density
and particle number.
In the present work we have for the first time treated the

nonlocality of these potentials for the nucleus 40Ca with the
aim to include all available data below the Fermi energy

that can be linked to the nucleon single-particle propagator
[9] while maintaining a correct description of the elastic-
scattering data. The result is a DOM potential that can be
interpreted as the nucleon self-energy constrained by all
available experimental data up to 200 MeV. Such a self-
energy allows for a consistent treatment of nuclear reac-
tions that depend on distorted waves generated by optical
potentials as well as overlap functions and their normali-
zation for the addition and removal of nucleons to discrete
final states. The reanalysis of such reactions may further
improve the consistency of the extracted structure infor-
mation. Extending this version of the DOM to N ≠ Z will
allow for predictions of properties that require the simulta-
neous knowledge of both reaction and structure informa-
tion, since at present few weakly interacting probes are
available for exotic nuclei [10].
The self-energy Σlj provides the critical ingredient to

solve the Dyson equation for the nucleon propagator Glj.
Employing an angular momentum basis, it reads

Gljðr;r0;EÞ¼Gð0Þ
lj ðr;r0;EÞþ

Z
d~r~r2

Z
d~r0 ~r02

×Gð0Þ
lj ðr; ~r;EÞΣljð~r; ~r0;EÞGljð~r0;r0;EÞ: (1)

The noninteracting propagators Gð0Þ
lj only contain kinetic

energy contributions. The solution of this equation gen-
erates Sljðr;EÞ ¼ ImGljðr; r;EÞ=π, the hole spectral den-
sity, for negative continuum energies. The spectral strength
at E, for a given lj, is given by

SljðEÞ ¼
Z

∞

0

drr2Sljðr;EÞ: (2)
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For discrete energies one solves the eigenvalue equation for
the overlap functions ψn

ljðrÞ ¼ hΨA−1
n jarljjΨA

0 i, for the
removal of a nucleon at r with discrete quantum numbers
l and j [8]. The removal energy corresponds to ε−n ¼
EA
0 − EA−1

n with the normalization for such a solution αqh
given by Snlj ¼ ½1 − ∂Σljðαqh;αqh;EÞ=∂Ejε−n �−1. We note
that from the solution of the Dyson equation below the
Fermi energy, one can generate the one-body density
matrix by integrating the nondiagonal imaginary part of
the propagator up to the Fermi energy and therefore access
the expectation values of one-body operators in the ground
state including particle number, kinetic energy, and charge
density [9]. The latter is obtained by folding the point
density with the nucleon form factors [11]. For positive
energies, it was already realized long ago that the reducible
self-energy provides the scattering amplitude for elastic
nucleon scattering [12].
The self-energy fulfills the dispersion relation which

relates the physics of bound nucleons to those that propagate
at positive energy [9]. It contains a static correlated HF term
and dynamic parts representing the coupling in the A� 1
systems that start and end at the Fermi energies for addition
(εþF ¼ EAþ1

0 − EA
0 ) and removal (ε−F ¼ EA

0 − EA−1
0 ), respec-

tively. The latter feature is particular to a finite system and
allows for discrete quasiparticle and hole solutions of the
Dyson equation, where the imaginary part of the self-energy
vanishes. It is convenient to introduce the average Fermi
energy εF ¼ 1

2
½εþF − ε−F� and employ the subtracted form of

the dispersion relation calculated at this energy [5,8]

ReΣljðr; r0;EÞ ¼ Σljðr; r0; εFÞ

− P
Z

∞

εþF

dE0

π
ImΣljðr; r0;E0Þ

�
1

E − E0 −
1

εF − E0

�

þ P
Z

ε−F

−∞

dE0

π
ImΣljðr; r0;E0Þ

�
1

E − E0 −
1

εF − E0

�
; (3)

where P represents the principal value. The beauty of this
representation was recognized by Mahaux and Sartor [5,13]
since it allows for a link with empirical information both for
the real part of the nonlocal self-energy at the Fermi energy
(probed by a multitude of HF calculations) as well as
through empirical knowledge of the imaginary part of the
optical potential also constrained by experimental data.
Consequently, Eq. (3) yields a dynamic contribution to
the real part linking both energy domains around the Fermi
energy. Empirical information near εF is emphasized by
Eq. (3) because of the E0−2 weighting in the integrands. The
real self-energy at the Fermi energy will be denoted in the
following by ΣHF.
We now provide a more detailed description of the

changes that are necessary in the conventional application
of the DOM in order for the resulting potential to yield a
realistic description of the single-particle properties below
the Fermi energy. In particular, we refer to previous papers

for a description of ingredients that have not changed from
the purely local treatment of the DOM [14,15]. The
nonlocal treatment of the HF potential was discussed in
Ref. [8]. The present form reads

ΣHFðr; r0Þ ¼ −Vvol
HFðr; r0Þ þ Vwb

HFðr; r0Þ; (4)

where the volume term is given by

Vvol
HFðr; r0Þ ¼ V0

HFfð~r; rHF; aHFÞ
× ½x1Hðs; βvol1Þ þ ð1 − x1ÞHðs; βvol2Þ�; (5)

allowing for two different nonlocalities with different
weight (0 ≤ x1 ≤ 1). We use the notation ~r ¼ ðrþ r0Þ=2
and s ¼ r − r0. A wine bottle (wb) shape producing
Gaussian is introduced replacing the surface term of
Ref. [15]:

Vwb
HFðr; r0Þ ¼ V0

wb exp ð−~r2=ρ2wbÞHðs; βwbÞ: (6)

This Gaussian centered at the origin helps to represent
overlap functions generated by simple potentials that repro-
duce corresponding Monte Carlo results [16]. Nonlocality is
represented by a Gaussian form

Hðs; βÞ ¼ exp ð−s2=β2Þ=ðπ3=2β3Þ (7)

first suggested in Ref. [17]. As usual we employ Woods-
Saxon form factors fðr;ri;aiÞ¼½1þexpðr−riA1=3=aiÞ�−1.
Equation (4) is supplemented by the Coulomb and local spin-
orbit interaction as in Ref. [15].
The introduction of nonlocality in the imaginary part of

the self-energy is well founded theoretically, both for long-
range correlations [18] as well as short-range ones [19]. Its
implied l dependence is essential in reproducing the
correct particle number for protons and neutrons. The
nonlocal part of this imaginary component has the form

ImΣðr; r0; EÞ ¼ −Wvol
0 ðEÞfð~r; rvol; avolÞHðs; βvolÞ

þ 4asurWsurðEÞHðs; βsurÞ
d
d~r

fð~r; rsur; asurÞ:
(8)

We also include a local spin-orbit contribution as in
Ref. [15]. The energy dependence of the volume absorption
has the form used in Ref. [15], whereas for surface
absorption we employed the form of Ref. [14]. The solution
of the Dyson equation below the Fermi energy was
introduced in Ref. [8]. The scattering wave functions are
generated with the iterative procedure outlined in Ref. [20],
leading to a modest increase in computer time as compared
to the use of purely local potentials. Neutron and proton
potentials are kept identical in the fit except for the Coulomb
potential for protons. See Supplemental Material [21] for the
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numerical values of all parameters together with a list of all
employed equations.
Included in the present fit are the same elastic scattering

data and level information considered in Ref. [15]. In
addition, we now include the charge density of 40Ca as
given in Ref. [22] by a sum of Gaussians in the fit. Data from
the (e, e0p) reaction at high missing energy and momentum
obtained at Jefferson Lab for 12C [23], 27Al, 56Fe, and 197Au
[24] were incorporated as well. We note that the spectral
function of high-momentum protons per proton number is
essentially identical for 27Al and 56Fe, thereby providing a
sensible benchmark for their presence in 40Ca. We merely
aimed for a reasonable representation of these cross sections
since their interpretation requires further consideration of
rescattering contributions [25]. We did not include the results
of the analysis of the (e, e0p) reaction from NIKHEF [26]
because the extracted spectroscopic factors depend on the
employed local optical potentials. We plan to reanalyze these
data with our nonlocal potentials in a future study.
Motivated by the work of Refs. [18,19], we allow for

different nonlocalities above and below the Fermi energy,
otherwise the symmetry around this energy is essentially
maintained by the fit. The values of the nonlocality param-
eters β appear reasonable and range from 0.64 fm above to
0.81 fm below the Fermi energy for volume absorption.
These parameters are critical in ensuring that particle number
is adequately described. We limit contributions to l ≤ 5
below εF [19] obtaining 19.88 protons and 19.79 neutrons.
We note the extended energy domain for volume absorption
below εF to accommodate the Jefferson Lab data. Surface
absorption requires nonlocalities of 0.94 fm above and
2.07 fm below εF.
The final fit to the experimental elastic scattering data is

shown in Fig. 1 while the fits to total and reaction cross
sections are shown in Fig. 2. In all cases, the quality of the
fit is the same as in Refs. [14] or [15]. This statement also
holds for the analyzing powers.
Having established our description at positive energies is

equivalent to our earlier work, but now consistent with
theoretical expectations associated with the nonlocal con-
tent of the nucleon self-energy, we turn our attention to the
new results below the Fermi energy. In Fig. 3 we display the
spectral strength given in Eq. (2) as a function of energy for
the first few levels in the independent-particle model. The
downward arrows identify the experimental location of the
levels near the Fermi energy while for deeply bound levels
they correspond to the peaks obtained from (p, 2p) [27]
and (e, e0p) reactions [28]. The DOM strength distributions
track the experimental results represented by their peak
location and width. Neutron single-particle energies are
listed in Table I for levels near εF. The calculated levels
exhibit a deviation of about 1 MeV from the experimental
values similar to Ref. [15], except for the 1s1=2.
For the quasihole proton states we find spectroscopic

factors of 0.78 for the 1s1=2 and 0.76 for the 0d3=2 level.

The location of the former deviates slightly from the
experimental peak as for neutrons which may require
additional state dependence of the self-energy as expressed
by poles nearby in energy [29]. The analysis of the (e, e0p)
reaction in Ref. [30] clarified that the treatment of non-
locality in the relativistic approach leads to different
distorted proton waves as compared to conventional non-
relativistic optical potentials, yielding about 10%–15%
larger spectroscopic factors. Our current results are also
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FIG. 1 (color online). Calculated and experimental elastic-
scattering angular distributions of the differential cross section
dσ=dΩ. Panels shows results for nþ 40Ca and pþ 40Ca. Data for
each energy are offset for clarity with the lowest energy at the
bottom and highest at the top of each frame. References to the
data are given in Ref. [15].
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FIG. 2 (color online). Total reaction cross sections are dis-
played as a function of proton energy while both total and
reaction cross sections are shown for neutrons.
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larger by about 10%–15% than the numbers extracted in
Ref. [26]. Introducing local DOM potentials in the analysis
of transfer reactions has salutary effects for the extraction of
spectroscopic information of neutrons [31] and nonlocal
potentials should further improve such analyses.
In Fig. 4 we compare the experimental charge density of

40Ca (thick line representing a 1% error) with the DOM fit.
While some details could be further improved, it is clear
that an excellent description of the charge density is
possible in the DOM. The correct particle number is
essential for this result, which in turn can only be achieved
by including nonlocal absorptive potentials that are also
constrained by the high-momentum spectral functions.
With a local absorption we are not capable to either
generate a particle number close to 20 or describe the
charge density accurately [8].
We compare in Fig. 5 the results for the high-momentum

removal spectral strength with the Jefferson Lab data [24].
We note that the high-energy data correspond to intrinsic

nucleon excitations and cannot be part of the present
analysis. To further improve the description, one would
have to introduce an energy dependence of the radial form
factors for the potentials. Nevertheless we conclude that an
adequate description is generated which corresponds to
10.6% of the protons having momenta above 1.4 fm−1.
Employing the energy sum rule [9] in the form given in
Ref. [32] yields a binding energy of 7.91 MeV per nucleon
much closer to the experimental 8.55 MeV than the
4.71 MeV found in Ref. [8]. The constrained presence
of the high-momentum nucleons is responsible for this
change [33]. The 7.91 MeV binding per nucleon obtained
here represents the contribution to the ground-state energy
from two-body interactions including a kinetic energy of
22.64 MeV per nucleon and was not part of the fit. This
empirical approach therefore leaves about 0.64 MeV per
nucleon attraction for higher-body interactions about
1 MeV less than the Green’s function Monte Carlo results
of Ref. [34] for light nuclei.
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FIG. 3 (color online). Spectral strength for protons in the lj
orbits which are fully occupied in the independent-particle model
as well as the f7=2 strength associated with the first empty orbit in
this description. The arrows indicate the experimental location of
the valence states as well as the peak energies for the distributions
of deeply bound ones.
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FIG. 4 (color online). Comparison of experimental charge
density [22] (thick line) with the DOM fit (thin line).
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TABLE I. Quasihole energies in MeV for neutron orbits in 40Ca
near the Fermi energy compared with experiment.

Orbit DOM Experiment

1p1=2 −3.47 −4.20
1p3=2 −4.51 −5.86
0f7=2 −7.36 −8.36
0d3=2 −16.2 −15.6
1s1=2 −15.3 −18.3
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In conclusion, we have demonstrated that the nucleon
self-energy for 40Ca requires a nonlocal form and can then,
with reasonable assumptions, represent all relevant single-
particle properties of this nucleus.
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