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Binary pulsars are excellent laboratories to test the building blocks of Einstein’s theory of general
relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all
inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution
of binary pulsars and find that it induces a much more rapid decay of the binary’s orbital period due to
the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place
the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of
Einstein’s theory much more accurately than any previous gravitational observation.
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Lorentz symmetry allowed physicists to reconcile
Maxwell’s electromagnetism with the principle of relativ-
ity, which states that the outcome of experiments should be
the same for all inertial observers. This reconciliation was
the basis of Einstein’s theory of special relativity. Einstein
later formulated general relativity (GR) as a Lorentz
symmetric completion of Newtonian gravity. Today, much
of theoretical physics is built on Lorentz symmetry. In
particular, it is a cornerstone of the standard model of
particle physics. Given how embedded this symmetry is in
our understanding of nature, any observation of its viola-
tion would shake theoretical physics at its core.
The experimental verification of Lorentz symmetry has a

long history. Today, particle physics experiments constrain
Lorentz violation in the standardmodel to an exquisite degree
[1]. But the same is not yet true for gravitational phenomena.
Solar System [2–4], certain binary pulsar [4–6], and cosmo-
logical [4,7,8] observations have been used to derive bounds
on Lorentz violation in gravity, but those are either weaker or
partial, focusing on preferred-frame effects. Lorentz sym-
metry has not yet been tested in regimes where gravity is
strong and the gravitational interaction is nonlinear, such as
mergers of neutron stars (NSs) and black hole collisions.
One may wonder about the necessity to test Lorentz

symmetry in gravity, given the tight constraints coming
from particle physics. In fact, if the Lorentz-violating effects
in gravity were to percolate into particle physics in a manner
consistent with these constraints, such effects would be
unobservable in gravitational experiments. However, this is
not necessarily the case; different mechanisms have been
put forth leading to Lorentz-violating effects in gravity that
can be much larger than those in particle physics; see, e.g.,
Ref. [9] or the discussion in Ref. [10] for a review.
Lorentz violation in gravity.—Let us consider modified

theories that violate Lorentz symmetry due to the existence

of a preferred time direction at each point of space and
time. This establishes a local preferred frame that violates
Lorentz symmetry, because the velocity of inertial observ-
ers with respect to this frame is in principle observable.
Much work has gone into searching for this preferred time
direction in high-energy physics [1,9], but here we will
concentrate on constraining low-energy Lorentz violation
in the gravity sector. As explained in detail and shown in
Refs. [11,12], one can model this preferred frame without
loss of generality through a timelike unit vector, the so-
called æ ther fieldUμ. The dynamics of this vector field can
be prescribed by two related theories: Einstein-æ ther
theory [11] and khronometric theory [13]. In the former
the vector field is generic, while in the latter it is related to
the existence of a global preferred time coordinate [12,13].
Both theories can be considered as low-energy descriptions
of high-energy completions of GR responsible for Lorentz
violation [11]. In the khronometric case, a possible com-
pletion is Hořava gravity [14,15], which hinges on Lorentz
violation to yield a power-counting renormalizable com-
pletion of GR.
The couplings of the æ ther field to gravity are directly

related to Lorentz violation. In the low-energy limit, these
are controlled by two sets of constants that affect different
phenomena. One of them, parameterized by (α1, α2),
controls preferred-frame effects in the weak field and
has been constrained by Solar System [2,3,16,17] and
pulsar observations [5,6]. The other set, parametrized by
(cþ, c−) in Einstein-æ ther theory and (β, λ) in khrono-
metric theory, controls other, more relativistic, Lorentz-
violating effects. Theoretical constraints on this set follow
from stability considerations and the absence of gravita-
tional Cherenkov radiation [4,13,18]. Cosmological obser-
vations can also be used to constrain this set of parameters
in the khronometric case [8,13] but not efficiently in the
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Einstein-æ ther theory [4,7]. Likewise, as we show in
Ref. [10], constraints on the strong-field versions of (α1, α2)
[6,19] do not efficiently bound (cþ, c−) or (λ, β). In
contrast, Lorentz violation in the dissipative sector of
strongly gravitating systems may lead to large observable
effects [20]. Here we calculate these effects rigorously
for the first time and place constraints on both sets of
parameters.
Binary pulsars as probes of Lorentz violation.—Binary

pulsars consist of a NS in orbit around either another NS or
a less compact companion, like a white dwarf. NSs are
strongly gravitating sources, because their masses and radii
are M� ∈ ð1; 2.4ÞM⊙ and R� ∈ ð10; 15Þ km, respectively,
leading to gravitational fields and compactnesses
C� ¼ −ΦNewt=c2 ¼ GM�=ðR�c2Þ ∈ ð0.1; 0.3Þ, where G is
Newton’s constant, c is the speed of light, and ΦNewt is the
Newtonian gravitational potential at the surface of the star.
Lorentz-violating theories induce corrections to the

orbital evolution of binary pulsars. In GR, the orbital
period decreases due to the emission of gravitational waves,
which occurs in a quadrupolar fashion because the com-
ponent’s masses and the center of mass vector are con-
served. In Lorentz-violating theories, however, the orbital
period decays much more rapidly because of the existence
of dipolar radiation. Such radiation is present, because the
center of gravitational mass does not necessarily coincide
with the center of inertial mass. This results in a time-
varying dipole moment that emits radiation as the objects
spiral into each other, dramatically accelerating the rate of
orbital decay.
Orbital period decay.—Let us consider a binary in a

circular orbit with component masses m1 and m2. The
orbit-averaged rate of orbital decay in a post-Newtonian
(PN) expansion (a PN expansion is one in the ratio of
the orbital velocity to the speed of light; henceforth, we set
c ¼ 1, except to label PN orders) is [20]
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In this equation, the quantities sA are sensitivity parameters
that will be defined in the next section, S ¼ m1s2=mþ
m2s1=m is a mass-weighted sensitivity average, and
(A1, A2, A3, A4) are certain functions of the coupling
constants (cþ, c−) [10]. [This expression was first derived
in Ref. [20] but with mistakes that we correct in Eqs. (1)
and (2), as described in [10].] An identical expression is
obtained in khronometric gravity, except that the functions

(A1, A2, A3, A4) now depend on the coupling constants
(β, λ) of that theory [10]. Equation (1) reduces to the GR
result when A ¼ 1, while the second term in Eq. (2)
corresponds to dipolar radiation.
For systems that are widely separated, like all observed

binary pulsars, the orbital decay rate is dominated by the
term with the least powers of Gm=Pb. This is because
Gm=Pb ¼ Oð10−10Þ for a typical NS binary with a 1-h
orbital period. Clearly then, the dipole term dominates the
orbital decay rate for all Lorentz-violating theories,
unless s1 − s2 ≈ 0.
Neutron star sensitivities.—As is clear from Eqs. (1)

and (2), the orbital decay rate in Lorentz-violating theories
depends on the sensitivity parameters sA. These quantities
are a measure of how the binding energy of a star changes
as a function of its relative motion with respect to the
preferred frame.
The sensitivities can be computed only once a moving

NS star solution in Lorentz-violating theories is obtained;
we will work in a slow-motion approximation to first order
in the velocity v ≪ 1, which is sufficient for their calcu-
lation without loss of generality [10,20,21]. We begin by
constructing the most general metric and æ ther field ansatz
for a slowly moving NS. At Oðv0Þ, this ansatz contains
only two free functions of the radial coordinate. At Oðv1Þ,
an appropriate gauge choice reduces the ansatz to three
(two) additional functions of the radial coordinate and polar
angle in Einstein-æ ther (khronometric) theory.
With thismetric ansatz, one can expand the field equations

in small velocity and solve them numerically order by order.
To Oðv0Þ, one obtains the Lorentz-violating version of the
Tolman-Oppenheimer-Volkoff equation, which describes
the NS structure and leads to the NS mass-radius relation.
ToOðv1Þ, one finds a system of partial differential equations
that can be decoupled into ordinary differential equations
with tensor spherical harmonics. This decoupling is similar
towhat occurs with the Einstein equations for genericmetric
perturbations about a Schwarzschild black hole background
[22].We establish this result here for the first time inLorentz-
violating theories, which is crucial to easily find a numerical
solution. TheOðv1Þ equations prescribe the behavior of the
metric and æ ther perturbations, which in turn determine the
sensitivities.
When numerically solving the differential equations of

structure, one must close them by choosing an equation of
state (EoS). This equation fixes the pressure as a function
of the energy density in the NS interior. We restrict attention
to spherically symmetric, nonrotating, cold (and thus old)
NSs, as theseareappropriate simplifications forbinarypulsar
studies [23,24]. For these stars, there are several realistic
EoSs available; we here explore four representative exam-
ples: Akmal-Pandharipande-Ravenhall (APR) [25], SLy
[26], Shen [27,28], and Lattimer-Swesty with nuclear
incompressibility of 220 MeV (LS220) [29], the last
two with temperature 0.1 MeV, neutrinoless, and in β
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equilibrium. Since Lorentz violations in thematter sector are
strongly constrained experimentally, viable Lorentz-violat-
ing modifications to the EoSs are forced to be small and
would not produce any detectable effect on the systems we
are considering. Thus, we can focus, without loss of general-
ity, onviolations in the gravity sector alone (see, e.g., Ref. [9]
and the discussion in Ref. [10] for a review of possible
mechanisms yielding violations of Lorentz symmetry in
gravity that do not percolate into the matter sector).
All numerical solutions are obtained as follows. In the

NS interior, we numerically integrate the differential
equations from some core radius rc ≪ R� to the NS surface
R�, defined as the radius at which the internal pressure
vanishes. We then use the value of the interior solution at
the NS surface as initial conditions to numerically integrate
the exterior equations from the surface to some matching
radius rm ≫ R�. The exterior solution is then compared to
an approximate analytic solution, calculated asymptotically
as an expansion about spatial infinity. This comparison
allows us to read out the mass of the NS and to guarantee
that the metric is continuous and first-order differentiable at
the matching surface. All throughout we use a fourth-order
Runge-Kutta algorithm for numerical integrations, check-
ing that our results are robust to changes in discretization,
size of core radius, and location of the matching surface.
Figure 1 shows sA in Einstein-æ ther theory (top panel)

and khronometric theory (bottom panel) as a function of the
NS compactness. The sensitivities can be approximated in
the low-compactness regime as a linear function in the ratio
of the binding energy to the NS mass [20]. This expression
for sA is shown as a solid (red) line in Fig. 1. Observe
that this approximation is inaccurate for NSs, since C� ∈
ð0.1; 0.3Þ approximately, and the ratio of the binding
energy to the mass is not such a small number. We find
that the low-compactness approximation underestimates
the correct value of the NS sensitivity by as much as 200%
for realistic NS compactnesses.
Binary pulsar constraints.—All binary pulsar measure-

ments of the orbital decay rate agreewith the GR prediction.
Thus, anydeviation from this predictionmust be smaller than
observational uncertainties. Given the numerical sensitiv-
ities computed above, we can now evaluate the prediction
of the orbital decay rate in Lorentz-violating theories and
compare them to binary pulsar observations and their
uncertainties.
We here concentrate on observations of the binary

pulsars PSR J1141-6545 [23], PSR J0348+0432 [24],
and PSR J0737-3039 [30]. The first two are binary systems
composed of a NS and white dwarf, either in a 0.17
eccentricity, 4.74-h orbit or in a Oð10−6Þ eccentricity,
2.46-h orbit. The last system is a double binary pulsar
with 0.088 eccentricity and 2.45-h orbit.
The Lorentz-violating prediction of the orbital decay

rate, however, depends not only on the coupling constants
of the theory, but also on the orbital period, the individual

masses, and the sensitivities [see Eq. (1)]. Each of these
quantities is measured to a finite accuracy that then
propagates into any constraints one may wish to place.
What is worse, the sensitivities and the individual masses
depend on the NS EoS, which again induces a systematic
uncertainty on any constraints. Given this, any given binary
pulsar observation will lead to an allowed surface (instead
of a line) in the (cþ, c−) and (β, λ) parameter space, since
(α1, α2) are stringently constrained by Solar System tests
and binary pulsar observations.
One may worry that some orbital parameters, like the

individual masses, are measured by assuming GR is
correct, and, thus, it would be inconsistent to use these
values to test GR. In GR, these masses are measured from
the post-Keplerian parameters that depend only on the
Hamiltonian of the system, e.g., periastron precession
and the Shapiro time delay. In Lorentz-violating theories,
corrections to the Hamiltonian of the system, and thus to
the previous observables, are of 1PN order, i.e., Oðv2=c2Þ
relative to the leading-order GR term. Therefore, using the
values for the individual masses obtained by assuming GR
is valid induces an error that is of Oðv2=c2Þ ∼ 10−6 for the
binaries considered here.
Given N binary pulsar observations, one can construct

N, two-dimensional allowed surfaces, all of which will be
different from each other because of different system
parameters and observational uncertainties. The intersec-
tion of all these surfaces yields the only allowed region in
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FIG. 1 (color online). NS sensitivities in Lorentz-violating
theories. We plot the absolute value of sA in Einstein-æ ther
(top) and khronometric theory (bottom) as a function of the NS
compactness for (α1, α2) that saturate Solar System constraints.
We use the constraints from Solar System tests and not from
binary pulsars, because the latter constrain not only (α1, α2) but
also cþ and c− [10]. We choose cþ, c−, and β equal to 10−4, with
λ determined by β for the chosen values of (α1, α2). Different
curves correspond to different EoSs. Observe that sA increases
with increasing C�. The solid (red) curve is the low-compactness
approximation to sA [20], which disagrees with our results for
realistic NS compactness (C� ∼ 0.1).
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the coupling parameter space that would not be ruled
out by the binary pulsar observations under consideration.
Figure 2 shows the allowed coupling parameter region
given the observations of PSR J1141-6545 [23], PSR J0348
+0432 [24], and PSR J0737-3039 [30] (dark, purple shaded
region). All throughout, we restrict attention to values of
(α1, α2) that satisfy Solar System constraints.
Notice that PSR J0737-3039 is very useful in constraining

Lorentz-violating theories not just because of how relativ-
istic it is, but also because both the dipolar and quadrupolar,
Lorentz-violating corrections to the orbital decay rate are
important for this system. This is because PSR J0737-3039
is composed of two NSs with similar masses, and thus
similar sensitivities, which renders the dipolar term com-
parable to a quadrupolar one. Thus, the orbital decay rate for
this system scales with (cþ, c−) differently than for the other
systems we considered, placing stronger constraints when
combining all observations.
Figure 2 also compares the new binary pulsar constraints

to other constraints in the literature. The light, blue shaded
region and the dark, orange shaded one are those allowed
after considering stability or Cherenkov constraints and big
bang nucleosynthesis constraints, respectively. We do not
show cosmological constraints on Einstein-æ ther theory
[7], because they are comparable to the stability or
Cherenkov constraints shown in the plot. Observe that
binary pulsar observations push Lorentz-violating theories
to a tiny region of coupling parameter space. The red,
dashed curve shows the values of (cþ, c−) and (β, λ) for
which the energy flux agrees exactly with the GR pre-
diction to leading-PN order and setting the sensitivities to
zero [3,20]. Observe that this curve greatly underestimates

the constraints that one can place with binary pulsars.
The constraints on (cþ, c−) shown in the left panel are
significantly stronger and more robust than the order-of-
magnitude estimate of [20]. [The estimates in [20] are
based on a small (cþ, c−) approximation, leading PN order,
leading order in the sensitivities and neglect all degener-
acies, including our ignorance of the EoS.]
The above constraints are robust to systematic errors.

The two main sources of such systematics are the neglect
of the orbital eccentricity and the NS spin. The former is
justified, because the binary pulsar systems we considered
are almost circular and eccentricity affects the dipolar
radiation in the orbital decay rate at the order of eccentricity
squared. A nonvanishing eccentricity does play an impor-
tant role in other post-Keplerian parameters, like periastron
precession, which is crucial to measure the individual
masses of the system. As we explained, such observables
are not modified in Lorentz-violating theories to our
working precision, and their measurement assuming GR
is still valid. The neglect of spin is justified, because the NS
spin angular momentum S� observed in binary pulsars is
very small: j~S�j=M2� ¼ Oð10−2Þ [23,24,30]. These system-
atics would modify the constraints shown here by less than
10% and would not be visible in Fig. 2.
Discussion.—We have derived new constraints on

Lorentz-violating effects in gravity by using binary pulsar
observations. We began by establishing that the modified
field equations for slowly moving NSs decouple through a
tensor spherical harmonic decomposition. We then numeri-
cally integrated this decoupled differential system to obtain
the NS sensitivities for a variety of EoSs, without making
any weak-field assumptions. We used these sensitivities to
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compute binary pulsar constraints on parameters related to
Lorentz violation in gravity. The new results presented here
(in combination with Solar System, binary pulsar, and
cosmological bounds on preferred-frame effects) provide
the strongest constraints to date on Lorentz violation in the
gravitational sector. These constraints are essential in the
study of Lorentz symmetry as a fundamental property of
nature, an endeavour which may provide insights into the
theory that unifies quantum mechanics and gravitational
physics. Finally, we stress that a detailed discussion of our
analysis and calculations can be found in Ref. [10].
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