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A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose
thermal states—at sufficiently low temperature—are universal resources for the computation. Initialization of
the computer would correspond to cooling the system. We perform an experimental quantum simulation of
such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the
equivalence between local dephasing and thermalization for these states. This allows us to tune the system’s
temperature by changing the dephasing strength.Wemonitor the entanglement as the system cools down and
observe the transitions from separability to bound entanglement, and then to free entanglement. We also
analyze the performance of the system for measurement-based single-qubit state preparation. These studies
constitute a basic characterization of experimental cluster-state computation under imperfect conditions.
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Introduction.—One of the main approaches to quantum
computing is the measurement-based quantum computa-
tion (MBQC) model [1]. There, computations are per-
formed by adaptive single-particle measurements on lattice
systems prepared in many-body entangled states, which are
universal resources for the computation. Particularly con-
venient is the case when such states happen to be the unique
ground state of a gapped Hamiltonian. Then, the resource
for the computation is obtained by cooling the Hamiltonian
system down to its ground state. The energy gap Δ, in turn,
provides an intrinsic energy barrier against thermal exci-
tations that may drive the system out of the ground state.
Several examples of these Hamiltonians have been found
for interacting spin [2–4] and bosonic [5,6] systems.
The best studied example, and the only one known for

the case of qubits [7,8], is the cluster-state Hamiltonian.
Its ground state, as the name suggests, is the cluster state,
which is a universal resource for the one-way model of
MBQC [1]. It belongs to the more general family of graph
states, which possess a variety of applications in quantum
information and communication [9,10]. In addition, fault-
tolerant error correction is fully developed for the cluster-
state one-way model [11,12]. In particular, not only the
ground state but also the thermal states up to a temperature
of the order of Δ are universal resources for MBQC [13].
Furthermore, this Hamiltonian can in principle be effi-
ciently cooled down by local interaction with independent
thermal baths at low temperature [14]. However, such a
cooling process is still pending experimental demonstra-
tion. Thus, quantum simulations constitute a powerful tool
for the experimental study of this kind of system [15].
In this work, we experimentally study three-qubit ther-

mal cluster states at tunable temperatures. We use the
polarization of two photons to encode two of the qubits and

a path degree of freedom of one of the photons to encode
the third one. We exploit the equivalence between local
dephasing and thermalization for cluster states [13,16,17],
which allows us to tune the system’s temperature by
changing the dephasing strength. We perform state tomog-
raphy for a sequence of temperatures ranging from high
temperatures, corresponding to complete dephasing, to
nearly zero, corresponding to almost pure entangled states.
The fidelities of the experimental states with respect to the
ideal thermal states are above 93%. Implementing a real
cluster-state Hamiltonian is still challenging. We produce
the corresponding thermal states with a quantum simulation
(see Ref. [18] and the references therein). We consider the
case where the simulated system is in contact with a
reservoir whose temperature decreases adiabatically, so
that the system and reservoir remain in thermal equilibrium
throughout the temperature change. We monitor the entan-
glement as the temperature decreases [19,20]. Within the
experimental uncertainties, it is possible to observe the
transition from separability to bound entanglement, and
subsequently from bound to distillable entanglement, as is
predicted theoretically [17,21]. Interestingly, the medium-
temperature states created are, to our knowledge, the first
experimental observation of both thermal bound entangled
states and of bound entangled states of three qubits. Finally,
to analyze the effects of temperature on the thermal linear-
cluster state as a computational resource, we implement
a measurement-based state preparation and measure its
average fidelity over generic single-qubit target states.
Theory.—Cluster states correspond to graph states whose

associated graph is a rectangular lattice. A general N-qubit
graph state jG0

Ni is associated to a graph G, composed of N
vertices and a set E of edges fi; jg connecting vertices i and
j for 1 ≤ i, j ≤ N, which determines the geometry of G.
The usual operational definition is [9,10]
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jG0
Ni ≐

Y

fi;jg∈E
CZijjþi⊗N; (1)

where jþi ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
, and j0i and j1i are the

computational-basis states. The operation CZij ≐
ðj0iih0ij ⊗ 1j þ j1iih1ij ⊗ ZjÞ ⊗ 1īj, with Zj the third
Pauli operator acting on qubit j, and 1j and 1īj the identity
operators on qubits j and all qubits but i and j, respectively,
is the maximally entangling controlled-Z gate acting non-
trivially on qubits i and j.
An alternative definition of Eq. (1) is through its parent

Hamiltonian

H ≐ −
Δ
2

XN

i¼1

Xi ⊗
j∈N i

Zj; (2)

with Δ > 0 the energy gap, Xi the usual first Pauli operator
acting on qubit i, and N i the set of first neighbors of
qubit i according to E. All N local operators appearing in
summation (2) commute and have eigenvalues 1 or −1. The
Hamiltonian has then a unique ground state of eigenenergy
−ðNΔ=2Þ and is in addition frustration free, meaning that
the ground state of the total Hamiltonian is also the ground
state of each local term in the sum. The unique ground state
is nothing but jG0

Ni.
The eigenstates of (2) can be written as jGμ

Ni ≐
⊗
N

i¼1
Zμi
i jG0

Ni, where μ ≐ ðμ1;…; μNÞ, with μi ¼ 0

or 1, for all 1≤i≤N, and have eigenenergies
−ðΔ=2ÞPN

i¼1ð−1Þμi . That is, Zi creates an excitation of
H on jG0

Ni. This can be seen from the fact that
ZiXi ⊗

j∈N i

ZjZi ¼ −Xi ⊗
j∈N i

Zj, for all i and that H is a

commuting frustration-free Hamiltonian. The multi-index
μ can be thought of as an excitation vector, whose norm
gives the number of excitations. The energy difference
between the ground state and the first-excited manifold
is Δ, which explains the name “gap.” Accordingly, the
thermal state ρT at equilibrium temperature T (in units of
Boltzmann’s constant kB) is defined as

ρT ¼ e−H=T

Tr½e−H=T � : (3)

Since system excitations are created by the Z Pauli
operators, the thermal state is equivalent to the ground state
under independent dephasing [13,16,17]. That is,

ρT ≡ E1 ⊗ E2… ⊗ EN jG0
NihG0

N j; (4)

where

Eiρ ¼
�
1 −

p
2

�
ρþ p

2
ZiρZi (5)

is the dephasing channel on qubit i, for any state ρ, with
dephasing strength

p ¼ 2

1þ eΔ=T
: (6)

Experiment.—In our experiment, we use equivalence (4)
to create ρT for a 1D graph of N ¼ 3, i.e., the three-qubit
thermal linear-cluster state. More precisely, we experimen-
tally prepare entangled photons in (an almost pure) three-
qubit linear-cluster state and apply independent dephasing
on each qubit. As we can see from Eq. (6), the temperature
of the thermal state is tuned by choosing the strength p of
the dephasing channel.
The experimental setup is shown in Fig. 1. A He-Cd

(helium cadmium) laser at 325 nm pumps two cross-axis
barium beta borate nonlinear crystals and produces
entangled photons at 650 nm. The state of these photons
can be written as [22]

jΦi ¼ 1ffiffiffi
2

p ðj0iAp
j0iBp

þ j1iAp
j1iBp

Þ; (7)

where j0i (j1i) is the horizontal (vertical) polarization of
each photon, and the labels Ap and Bp refer to the qubits
encoded in the polarization of photons A and B, respec-
tively. The photons produced in the spatial mode A are
detected after polarization analysis. Photon B is sent to a
beam displacer (BD1) that, due to its birefringence, trans-
mits the V-polarized photons in spatial mode 1 and deflects
the H-polarized photons to mode 0. Due to BD1, the
spatial degree of freedom of photon B becomes entangled
with the photon’s polarization, producing the state jΨi ¼
ðj0iAp

j0iBs
j0iBp

þ j1iAp
j1iBs

j1iBp
Þ= ffiffiffi

2
p

, where Bs labels
the spatial-mode qubit of photon B. To obtain state (1),
we apply a Hadamard gate, which maps j0i into jþi and j1i
into j−i, on qubits Ap and Bp. This is done with half-wave
plates HWPA1 and HWPB2, which finally lead to the desired
state,

jG0
3i ¼

1ffiffiffi
2

p ðjþiAp
j0iBs

jþiBp
þ j−iAp

j1iBs
j−iBp

Þ: (8)

FIG. 1 (color online). Experimental setup. HWP is half-wave
plate, QWP is quarter-wave plate, BBO is barium beta borate
nonlinear crystal, BD is beam displacer, and PBS is polarizing
beam splitter. See text for more detail.
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Figure 1 also describes the detection setup used for the
tomographic reconstruction of the experimental three-qubit
state. Since photons A encode only polarization qubits,
tomographic measurements are performed as usual, using
a quarter-wave plate QWPA1, a half-wave plate HWPA3,
and a polarizing beam splitter PBSA [23]. For photons B,
tomographic measurements require measuring the polari-
zation and spatial-mode degrees of freedom simultane-
ously. Here we make use of the same configuration as in
Ref. [24]. With the wave plates QWPB1 and HWPB4, and
the beam displacer BD2, we perform tomographic mea-
surements on qubit Bp. As we can see in Fig. 1, BD1 and
BD2 form an interferometer, so that paths 0 and 1 are
recombined coherently at BD2. This is crucial for the
tomographic measurements of qubit Bs. Since BD2 also
deflects photons with polarization 0 and transmits those
with polarization 1, the 0-polarized photons at the inter-
ferometer output correspond to those of path 0 inside the
interferometer. In the same way, photons in path 1 inside
the interferometer are detected at the output with polari-
zation 1. Thus, the tomographic measurements of Bs are
performed with QWPB2, HWPB5, and PBSB, outside the
interferometer. Then, the photons are coupled into single-
mode fibers that are connected to single-photon detectors,
and coincidence events are registered. To perform the
reconstruction of the complete three-qubit density matrix,
64 settings of QWPA1, HWPA3, QWPB1, HWPB4, QWPB2,
and HWPB5 are used, following the standard recipe [23].
Thermal states (3) are created by applying the dephasing

channel (5) to each qubit of Eq. (8), according to equiv-
alence (4). Channel (5) is a sum of two events: (i) with
probability ð1 − p=2Þ, the state remains unchanged, and
(ii) with probability p=2, a Z gate is applied to the qubit.
This is implemented by toggling in and out the three half-
wave plates HWPA2, HWPB1, and HWPB3, which act as Z
gates on qubits Ap, Bs, and Bp, respectively. Notice that the
Z gate on qubit Bs is implemented by HWPB1, inserted
before the interferometer. This is due to the fact that a
relative π phase between polarizations 0 and 1 before the
interferometer is equivalent to a relative π phase between
the paths 0 and 1 inside the interferometer. The half-wave
plates HWPA2, HWPB1, and HWPB3 are inserted in the path
of the photons, a fraction p=2 of the total measurement
runs. In this way, by averaging over the outcomes of all
measurement runs, one effectively implements the desired
dephasing channel (5) on all three qubits.
Results.—We tomographically reconstructed the three-

qubit density matrices for many values of p, or equivalently
T. Figure 2 shows the density matrices reconstructed for
three values of T=Δ ¼ 1=½lnð2 − pÞ − lnp�. The produced
states have fidelities larger than 0.93% with thermal
states (3) at the temperature given by Eq. (6).
Due to experimental imperfections, the Z gates in the

implementation of the dephasing channels are not ideal.
A better description of the reconstructed density matrices

corresponds to a modified dephasing channel, where the
Z gate is replaced by the phase gate FðαÞ ¼ j0ih0jþ
eiαj1ih1j. A good agreement with the experimental data
is obtained with α ¼ 0.84π, as can be seen in Fig. 3.

FIG. 2 (color online). Real (left panels) and imaginary (right
panels) parts of the reconstructed density matrices for three
different temperatures. The ground state jG0

3i corresponds to
T=Δ ¼ 0. As T=Δ increases, the coherences decrease, until
T=Δ ¼ 1.95, when they become negligible and the state is
practically the maximally mixed.

FIG. 3 (color online). Negativities NApjBsBp
(red squares),

NBpjApBs
(black diamonds), and NBsjApBp

(blue circles), for the
three bipartitions ApjBsBp, BpjApBs, and BsjApBp, respectively,
of the experimental density matrices, as functions of T=Δ. The
solid lines correspond to the negativities of the theoretical thermal
cluster states, with the substitution of Z with FðαÞ (see text).
As the temperature increases, NApjBsBp

and NBpjApBs
vanish before

NBsjApBp
, as can be seen in the inset. This causes the emergence of

bound entangled states (see text). We symbolize null negativities
with hollow symbols.
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Let us now analyze the entanglement dependence on
the temperature. In Fig. 3 we can see the evolution of the
bipartite entanglement, as measured by the negativity [25],
across the three bipartitions, as we cool down the system.
As we can see, for high temperatures T=Δ≳ 1.95, the
negativities in all three partitions are zero. At T=Δ≃ 1.95,
negativity NBsjApBp

, with respect to qubit Bs, becomes
positive, while NApjBsBp

and NBpjApBs
, with respect to qubits

Ap and Bp, respectively, remain null, up to the experimental
uncertainty. This difference comes from the fact that state
(8) is not symmetric with respect to the exchange of qubits.
At this point, the system becomes bound entangled [17]. If
NApjBsBp

¼ 0 ¼ NBpjApBs
, no entanglement can be extracted

from the bipartitions ApjBsBp or BpjApBs by local oper-
ations assisted by classical communication. Consequently,
no entanglement can be distilled between any two qubits by
individual local operations at each qubit, because any pair
of qubits is split either by bipartitionApjBsBp or byBpjApBs,
both of which have positive partially transposed density
matrices [17]. This implies that no entanglement can be
extracted at all by individual local operations assisted
by classical communication. However, the negativity for
the partition BsjApBp is positive, meaning that the system
is entangled. This kind of multipartite bound entanglement
was observed for four qubits in Refs. [26–29]. The emer-
gence of bound entanglement is better appreciated in the
inset. There, one observes for instance that, at tempera-
tures T=Δ≃ 1.8 and T=Δ≃ 1.61,NApjBsBp

andNBpjApBs
are

null within the error bars (of size 0.02), whereas NBsjApBs
is,

respectively, 0.04(0.02) and 0.06(0.02) for these temper-
atures. Finally, in the low-temperature region T=Δ≲ 1.5,
all the negativities are positive and the entanglement is
thus distillable.
In the procedure for the calculation of the error bars we

assume a Poissonian distribution for the coincidence counts
and perform Monte Carlo simulation to obtain a distribu-
tion of negativities, and take its standard deviation as the
error. The small error bars were achieved thanks to a
relatively high coincidence counting rate (200 per second at
the populations) and large sampling time for every projec-
tive measurement. The measured bound entangled state
at temperature T=Δ≃ 1.8 has a fidelity F ¼ 0.95 with
respect to the theoretically predicted state. To our knowl-
edge, this is the first time a bound entangled state has been
measured in a three-qubit system.
Finally, we study the usefulness of our thermal states as

resources for noisy MBQC [30]. In particular, we imple-
ment a measurement-based single-qubit state preparation,
and measure its average fidelity over Haar-random single-
qubit target states. The latter is equivalent to the average
over any two design (see Ref. [31] and references therein,
for example). This is very convenient, as two designs are
for instance given by the eigenstates in any set of mutually
unbiased bases [32]. We choose the mutually unbiased

bases given by the eigenstates of the X, Y, and Z Pauli
operators: fjþi; j−ig, fjri ≐ ðj0i þ ij1iÞ= ffiffiffi

2
p

; jli ≐ ðj0i−
ij1iÞ= ffiffiffi

2
p g, and fj0i; j1ig, respectively.

The protocol is schematically shown in the inset of
Fig. 4. We make projective measurements MBp

and MBs
in

either the X, Y, or Z bases, preparing in each case a
conditional state ϱAp

in qubit Ap. Ideally, ϱAp
should be an

eigenstate of X, Y, or Z. The desired average fidelity is thus
obtained by averaging the fidelity of ϱAp

with the expected
eigenstate for each measurement choice and outcome,
according to usual cluster-state computation [1]. The
protocol is repeated for different temperatures.
The experimental results are shown in Fig. 4. The solid

line is a theoretical curve obtained by taking the ideal initial
state with unity purity and evolving it to higher temper-
atures through the dephasing channel, just like in Eq. (4).
The average fidelity of the prepared states surpasses
the classical benchmark of 2=3 [33] for temperatures
T=Δ≲ 1.1, showing the usefulness of these thermal
states. We observe a good agreement between theory
and experiment for intermediate temperatures between
0.5≳ T=Δ≳ 2. For T=Δ≲ 0.5, the experimental points
are shifted from the theoretical curve. Even though the
initial state is highly pure, the small amount of mixedness
might be responsible for this deviation. Below the classical
limit, the experimental fidelities are higher than the
theoretical predictions, possibly due to residual classical
correlations between the polarization and path degrees of
freedom in the same photon.
Conclusions.—Low-temperature states of systems gov-

erned by experimentally feasible Hamiltonians offer a
promising platform for universal measurement-based quan-
tum computation. Experimental investigations of the role of
thermalization, with emphasis on the nature of entangle-
ment decay it induces on these systems and the limitations

FIG. 4 (color online). Experimental results: average fidelity in
the single-qubit state preparation (see inset) as a function of the
temperature. Hollow squares indicate nondistillable (probably
separable) states, and hollow circles bound entangled states
(nondistillable with respect to just two bipartitions). Solid circles,
in turn, correspond to free entangled states.
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it imposes on them as computational resources, are very
timely. Here, we performed such an investigation with
entangled photons and linear-optical networks. We pre-
pared three-qubit thermal linear-cluster states at tunable
temperatures. This allowed us to simulate the system
cooling process.
We characterized the entanglement dynamics as temper-

ature decreases, observing the transition from separability,
at infinite temperature, to bound entanglement, at inter-
mediate temperatures, and finally to free, distillable
entanglement, for low temperatures. Experimental bound
entanglement has already been reported [26–29,34,35].
However, the bound entangled states reported here con-
stitute, to our knowledge, the first experimental observation
of this type of entanglement both in thermal states and in
the lowest-dimensional system for which this kind of
entanglement is possible.
Finally, we analyzed the effects of nonzero temperature

in a simple, exemplary cluster-state computation: the
preparation of an arbitrary single-qubit state. We charac-
terized the range of temperatures for which the thermal
states provide average fidelities higher than those attainable
with any classical strategy.
These studies give a basic experimental characterization

of the dynamics of cluster-state systems in thermal equi-
librium with a bath whose temperature varies slowly. Our
proof-of-principle photonic implementation provides thus
useful grounds for future experimental studies of similar
systems with more general physical platforms.
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