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We show that the near-field functionality of hyperbolic metamaterials (HMM), typically proposed for
increasing the photonic local density of states (LDOS), can be achieved with thin metal films. Although
HMMs have an infinite density of internally propagating plane-wave states, the external coupling to nearby
emitters is severely restricted. We show analytically that properly designed thin films, of thicknesses
comparable to the metal size of a hyperbolic metamaterial, yield an LDOS as high as (if not higher than)
that of HMMs. We illustrate these ideas by performing exact numerical computations of the LDOS of
multilayer HMMs, along with their application to the problem of maximizing near-field heat transfer, to
show that single-layer thin films are suitable replacements in both cases.
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Near-field optics involves the coupling of evanescent
waves and holds great promise for applications ranging
from fluorescent imaging [1–3] to thermophotovoltaic heat
transfer [4,5]. Evanescent waves from nearby radiative
emitters can couple, for example, to plasmon modes at
metal-dielectric interfaces [6], surface states in photonic
crystals [7], and, as recently proposed, to a continuum of
propagating modes in effective, anisotropic materials with
hyperbolic dispersion [8,9]. In this Letter, we show that the
local density of states (LDOS) near a hyperbolic meta-
material (HMM) [8,10–13], even in the perfect effective-
medium limit, is fundamentally no larger than the LDOS
near thin metal films. Despite the HMM states being
accessible for almost all high wave-vector waves, their
coupling strength to near-field electric dipoles is only
moderate. We show analytically that thin metal films,
whose resonant waves couple very strongly at a small
number of large wave-vector states, yield an equally large
LDOS upon integration over the wave vector. Moreover,
the film thickness required to match the operational
frequency of the HMM is of the same order of magnitude
as the size of the metal within the HMM, such that the thin
film is much easier to fabricate. Although we begin with an
idealized asymptotic analysis to illustrate the basic physics,
we confirm these conclusions with exact calculations of
LDOS and heat transfer in realistic materials, obtaining
comparable results for HMMs and thin films.
Hyperbolic metamaterials are periodic, metallodielectric

composites with a unit cell size a much smaller than the
wavelength, simplifying their electromagnetic response to
that of a homogeneous medium [8,10,14–16]. Typical
structures have one- or two-dimensional periodicity, yield-
ing an anisotropic effective-permittivity tensor that, for
certain materials and dimensions, has components ϵ∥
(surface-parallel) and ϵ⊥ with opposite signs (ϵ∥ϵ⊥ < 0).
Such a material has hyperbolic dispersion, leading to

propagating plane-wave modes with a parallel wave vector
larger than the free-space wave vector, i.e., k∥ > ω=c, for
frequency ω. They have excited great interest because of
their potential to increase the LDOS [9,11–14,17–26], e.g.,
for radiative-lifetime engineering [17–22] and near-field
heat transfer enhancement [9,11,23–25].
Previous works have explained the increase in the LDOS

as arising from the hyperbolic ω-k dispersion relation,
which implies an infinite density of states (DOS) at all
frequencies for which ϵ∥ϵ⊥ < 0. Typically, the proposed
metamaterials exhibit orders of magnitude enhancements
for the LDOS, or for radiative heat transfer, when compared
to vacuum [13,21], bulk metal [11,17–20,25], or blackbody
[9,11,23–25] systems. (Reference [12] compares HMMs to
thin films, but no thickness is given. Our computations,
with optimal thicknesses, yield a larger LDOS for the thin
film than for the HMM.) We will show, however, that the
increased LDOS in each case is not due to anisotropy, but
rather to the reduction in resonant frequency (relative to the
plasma frequency of the bulk metal) that arises when the
fraction of metal is reduced. As we show below, an effective
metamaterial with isotropic ϵ ≈ −1, which achieves the
resonance shift without anisotropy, is better than the ideal
HMM with oppositely signed permittivity components.
While such an isotropic metamaterial would likely require
complex three-dimensional fabrication [27,28], here we
show that thin films—well-studied systems with resonance
frequencies far below the bulk plasma frequency ωp
[29–36]—exhibit the same near-field functionality as
HMMs. A primary difference is the larger bandwidth
provided by thin films; conversely, one could say that
HMMs offer selectivity. However, selectivity is a general
property of metamaterials [27,28,37,38] and does not arise
from hyperbolicity.
To compare the HMM to the thin film, we encapsulate

the responses in a scattering matrix Sðk∥;ωÞ. Such a
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description is valid for any linear system with translational
and rotational symmetry. Although the ultimate quantity of
interest is the LDOS ρðz;ωÞ at a point z near the interface,
as in Ref. [23] we define the weighted local density of
states (WLDOS) ρðz;ω; k∥Þ by ρðz;ωÞ ¼ R ρðz;ω; k∥Þdk∥,
thereby resolving the contribution at each k∥. In the
near field (k∥ ∼ 1=z ≫ ω=c), the WLDOS of an electric
dipole is dominated by contributions from the p (TM)
polarization, given by [39,40]

ρðk∥;ω; zÞ ≈
1

2π2ω
k2∥e

−2k∥zImS21ðk∥;ωÞ: (1)

Regardless of the origin of the large wave-vector states, the
key to increasing the LDOS is to increase ImS21, the
imaginary part of the reflection coefficient. Thus, even if
the DOS within a structure is infinite, the local density of
states near the structure additionally requires strong
external coupling. We will see that HMMs have only
moderate external coupling, with ImS21 ≤ 1, limiting their
total LDOS.
Anisotropic permittivity and hyperbolic dispersion.—To

isolate the contribution of anisotropy, without any shift in
resonance, we first compare the ideal anisotropic material,
with hyperbolic dispersion, to the ideal isotropic metallic
permittivity, which supports surface plasmon modes. We
assume a single interface, with vacuum on one side and a
bulk material on the other. Forgoing fabrication concerns
for the moment, we ask what material provides the largest
near-field LDOS at large parallel wave vector k∥ ≫ ω=c.
A surface plasmon at a metal-vacuum interface exhibits
maximum DOS for ϵmetal ¼ −1 [41]. Similarly, the largest
LDOS occurs for an HMM with ϵ∥ ¼ −1 and ϵ⊥ ¼ 1
[13,23] (or vice versa, at large k∥ only the product matters
and there is no distinction between Type I and Type II
HMMs). We can add any amount of loss ϵi to the
permittivities, defining the permittivities to be

ϵideal metal ¼ −1þ iϵi; (2)

ϵideal HMM ¼
 −1 0 0

0 −1 0

0 0 1

!

þ iϵi: (3)

The imaginary parts of the (TM) reflectivity S21 for the
ideal metal and HMM are

ImðS21Þideal metal ≈ Im

�
ϵ − 1

ϵþ 1

�

¼ 2

ϵi
; (4)

ImðS21Þideal HMM ≈ Im

�
ϵ∥ϵ⊥ − ffiffiffiffiffiffiffiffiffi

ϵ∥ϵ⊥
p

ϵ∥ϵ⊥ þ ffiffiffiffiffiffiffiffiffi
ϵ∥ϵ⊥

p
�

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2i

p

2þ ϵ2i
; (5)

where the reflectivities are independent of k∥ in the limit
k∥ ≫ ω=c. The ratio of the respective LDOS is then

ρideal metalðk∥;ωÞ
ρideal HMMðk∥;ωÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ϵ2i

q
þ 1

ϵi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2i

p > 1; (6)

where we see that the ideal metal, with ϵ ¼ −1þ iϵi,
is better than the anisotropic metamaterial with ϵ ¼
ðϵ∥; ϵ⊥Þ ¼ ð−1; 1Þ þ iϵi. There should be no difference
in photon lifetimes, as in each case the complex wave
vector is of the form k∥ ≈ ½ð1þ iÞ= ffiffiffi

2
p

ϵi�ω=c. The permit-
tivities in Eqs. (2) and (3) are exactly optimal only for
ϵi ¼ 0, but that is true for both structures, and thus their
relative performance is still meaningful. A subtlety for low-
loss materials is that Eq. (4) is only valid for kp ≫ k0=

ffiffiffiffi
ϵi

p
,

but the 1=ϵi amplitude for larger wave vectors compensates
and the ideal metal remains superior.
HMM vs thin film.—Away from the surface-plasmon

frequency where ϵ ≈ −1, bulk metals cannot compete with
HMMs. Alternatively, a thin metallic slab couples the front-
and rear-surface plasmons [29–31,41], yielding a symmet-
ric mode that can exist at ω ≪ ωp even for large k∥. The
thin-film modes still asymptotically approach ωp=

ffiffiffi
2

p
as

k∥ → ∞, but if kmax is the maximum k∥ of interest—defined
in HMMs by the unit cell—a film can exhibit low-
frequency modes at k∥ ∼ kmax.
For the thin metal film to be a practical replacement for

hyperbolic metamaterials, the optimal structure must not be
too thin. We now analyze a second case: optimizing the
near-field LDOS over a band of frequencies centered at ω0,
for a lossless metal with permittivity ϵðω0Þ ¼ ϵm ≪ −1
(to contrast with the ϵ ¼ −1 case studied previously).
We will design an optimal HMM and an optimal
metallic thin film, and find that the LDOS of each is
roughly equal.
We consider HMMs composed of a metal with permit-

tivity ϵm and a dielectric with permittivity ϵ ¼ 1 (for
simplicity), with a metallic fill fraction f. Typical effec-
tive-medium theory (EMT) approximations of HMMs
assume multilayer slabs [23,42] or periodic cylinders
[10,11,42]. For either one, the optimal fill fraction is
given by

f ≈
2

jϵmj
; (7)

chosen to satisfy the ideal relation ϵ∥ · ϵ⊥ ≈ −1 at ω0. We
now have the lossless version of the ideal scenario analyzed
before, yielding the imaginary part of the reflectivity as

ImðS21ÞHMM ¼ 1; (8)

in agreement with previously derived results [23]. Although
Eq. (8) is independent of wave vector, ultimately a, the
size of the unit cell within the HMM, limits the EMT
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approximation to k≲ kmax ¼ 2π=a (another limiting factor
is 2π=z), such that the bandwidth of the contribution to the
LDOS is Δk∥ ≈ 2π=a.
We can similarly derive the optimal thin-film structure,

comprising the same metal with permittivity ϵm, and
thickness d. We design the thin film to have a mode at
ω ¼ ω0 and kres;tf ¼ kmax=2 ¼ π=a. In agreement with
the choice of dielectric within the HMM, we assume
vacuum at the rear surface of the film. The reflectivity
of a thin film [43] is given by S21 ¼ r01½1 − expð−2k∥dÞ�=
½1 − r201 expð−2k∥dÞ�, where r01 is the reflectivity at the air-
metal interface. It follows that the optimal thickness is
given by

d ¼ a
π
ln jr01j ≈

2a
πjϵmj

≈
af
π
; (9)

which represents a pole in the reflectivity spectrum.
Hence, we see that the optimal thickness is within a

factor π of af; that is, it scales with the size of the metal in
the HMM. In a multilayer HMM af is exactly the thickness
of the individual metal layers, while in, e.g., nanorod
HMMs, af is the individual nanorod radius multiplied by
the square root of the fill fraction. Because the thin film has
approximately the thickness of the metal within a single
unit cell, the thin film will have less or nearly equal
absorptive losses as the HMM structure.
To compute the bandwidth for the thin film, we add a

loss ϵ00 to avoid poles in the reflectivity and take the limit
ϵ00 → 0. Since k∥d ≪ 1 (which follows from ϵm ≪ −1), we
can approximate expð−2k∥dÞ ≈ 1 − 2k∥d. On resonance,
the imaginary part of the reflectivity is given by

ImðS21Þthin film ¼ 2

ϵ00kres;tfd
¼ jϵmj

ϵ00
: (10)

The full-width half-max bandwidth Δk∥ of ImS21 is

Δk∥ ≈
2π

a
ϵ00

jϵmj
: (11)

The LDOS at ω0 requires a full integration of Eq. (1), but
we can define a simpler “reflectivity-bandwidth” product to
approximate the contribution of the reflectivity to the
integral (verifying later the accuracy of the approximation).
From Eqs. (8), (10), and (11), valid in the limits k∥ ≫ ω=c
and jϵmj ≫ 1, we have

½ImðS21ÞΔk∥�HMM ≈ kmax ¼
2π

a
; (12)

½ImðS21ÞΔk∥�thin film ≈
2π

a
: (13)

Thus, given an optimal HMM, a thin film can be
designed without further fabrication difficulty and with
approximately equal increase in LDOS.
Figure 1 clarifies the similarities between HMMs and

metallic thin films. A lossless Drude metal is employed for
both an optimal HMM and an optimal thin film. The center
frequency is ω0 ¼ ωp=

ffiffiffiffiffi
10

p
, and the unit cell a is chosen to

be a ¼ 0.1c=ωp. The HMM fill fraction and thin-film
thickness are chosen according to Eqs. (7) and (9). The
multilayer EMT is used (a nanorod model only shifts the
upper band of states downward). The computations are
exact and do not include any of the high-k approximations
utilized in the analysis. Although the underlying modes are
very different—a continuum of propagating modes in
HMMs vs discrete guided modes for thin films—their
LDOSs near ω0 are approximately equal.
Comparisons of LDOS and heat transfer.—We now

move from asymptotic analytical results, which reveal
the underlying physics, to rigorous computations of the
LDOS and near-field heat transfer characteristics for real
material systems. We assume multilayer implementations
of the HMMs, which enables us to use the exact Green’s

FIG. 1 (color online). (a) Comparison of the continuum of
modes in an HMM to the discrete modes of a thin film. Thin films
have symmetric and antisymmetric surface modes that split away
from ωp=

ffiffiffi
2

p
. The HMM is designed for maximum LDOS at

ω0 ¼ ωp=
ffiffiffiffiffi
10

p
, while the film is designed to have a resonance at

(ω0, kmax=2). The HMM comprises alternating layers of a lossless
Drude metal (plasma frequency ωp) and dielectric ϵ ¼ 1, with
metallic fill fraction f given by Eq. (7). The thin film consists of
the same metal, with thickness d given by Eq. (9). The unit cell
a ¼ 0.1c=ωp (kmaxc=ωp ¼ 20π). HMMs exhibit ImðS21Þ ≈ 1
[shading indicates ImðS21Þ > 0] for many k∥, whereas thin films
provide resonances with ImðS21Þ ≫ 1 for smaller bandwidths
Δk∥. (b) LDOS for each structure (normalized to the vacuum
LDOS ρ0) at z ¼ a, the closest point at which EMT is valid. The
two structures have almost equal LDOS at ω0, as predicted by
Eqs. (12) and (13).
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functions [44] in both computations [45], using the
numerically stable scattering-matrix formalism [46].
Figure 2 compares the near-field LDOS for an HMM

comprising Ag=AlO2 (similar to Ref. [42]) with that of a
thin silver film on an AlO2 substrate. In the WLDOS plots,
one observes the contrast between the relatively large
number of weakly coupled HMM modes and the single,
strongly coupled plasmonic mode of the film. The inte-
grated LDOS at λ ¼ 545 nm is shown in Fig. 2(c), which
also includes a 16-layer implementation of the HMM, with
a unit cell of 30 nm and fill fraction f ¼ 0.4 (chosen to
approximately maximize the contribution of hyperbolic
modes). The unit cell defines the minimum z at which EMT
is applicable, no smaller than z ¼ 20 nm. One can see that
the thin film (thickness ¼ 8 nm) has a larger LDOS in the
near field.
Figure 3 compares the near-field heat transfer for a very

different but commonly proposed [9,11,23,25,35,47,48]
material system: SiC=SiO2. SiC is a phonon-polaritonic
metal with negative permittivities for ω ∈ ½1.5; 1.8� ×
1014 Hz (λ ≈ 11–12 μm), which is promising for heat-
transfer applications where the peak of 300 K radiation is
λ ≈ 7.6 μm. For the HMM we choose a 20-layer (10 unit
cell) implementation with each 200 nm unit cell consisting
of 50 nm of SiC and 150 nm of SiO2 (ϵ ¼ 3.9), consistent
with previous work [9,47]. The total heat transfer
between objects at T1 and T2 is given by H ¼R
∞
0 dω½Θðω; T1Þ − Θðω; T2Þ�ΦðωÞ, where Φ is the
temperature-independent flux spectrum and Θ is the mean
energy per oscillator [49]. For comparison with the HMM,
we also consider a thin-film system. Instead of optimizing
the thickness, we choose d ¼ 50 nm, such that the film is
equivalent to removing 19 intermediate layers from the
HMM, leaving only the top layer and the SiO2 substrate.
Each computation solves for the flux rate between an object
and its mirror image. We see in Fig. 3 that the flux spectra
for the HMM and the thin film are nearly identical at
100 nm separation distance. The inset—the total heat

transfer at T1 ¼ 300 K and T2 ¼ 0 K—shows even greater
similarity between the two. These computations show that
not only is the thin film a suitable replacement for the
HMM, but that the top layer of the HMM is primarily
responsible for the heat transfer in the first place. A similar
effect was observed in Ref. [47], albeit by labeling
contributions within a structure rather than comparing
two different ones. We arrive at a different conclusion
than Ref. [47]: rather than removing the top layer, to create
a structure with less heat transfer but a greater relative
contribution from propagating modes, we suggest simply
replacing the HMM with a single thin layer, optimized for
even greater heat transfer.

FIG. 2 (color online). WLDOS computations (z ¼ 30 nm) for (a) Ag=AlO2 HMM described by EMT and (b) Ag thin film on AlO2

substrate, illustrating the distinct contrast between a continuum of propagating modes in the HMM and a single plasmonic mode in the
film. For convenience, ρ is multiplied by ac, where c is the speed of light. (c) LDOS (normalized to the vacuum LDOS ρ0) at
λ ¼ 545 nm for the thin film, the HMM (EMT), and a 16-layer implementation of the HMM (a ¼ 30 nm, f ¼ 0.4).

FIG. 3 (color online). Near-field heat transfer between
SiC=SiO2 structures. Heat flux spectrum for the HMM (red),
comprising 20 layers (10 unit cells) with a ¼ 200 nm and
f ¼ 0.25. Removing all but the top layer yields a SiC thin film
of thickness 50 nm on an SiO2 substrate (blue). Each structure
interacts with its mirror image, at a separation distance of 100 nm.
Inset: The total heat transfer, with one object at T ¼ 300 K and
the other at T ¼ 0 K.
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Conclusion.—We have shown that thin films can operate as
well or better than HMMs for increasing LDOS and heat
transfer. Although previous works [42] have differentiated
the “radiative” transitions of emitters near HMMs with
“quenching” near a plasmonic metal, there is no fundamental
difference between creating a photon in a bound thin-film
guided mode vs a high wave-vector photon that is trapped
(propagating) within the HMM. For any amount of loss, the
photon will eventually be absorbed unless some other mecha-
nism couples it to the far field—an equally difficult task for
either structure. For any near-field application, then, we expect
thin films to suffice as a replacement for HMMs. Away from
the near field, of course, there are effects HMMs can exhibit
that thin films cannot, such as negative refraction [50].

This work was supported by the Army Research Office
through the Institute for Soldier Nanotechnologies under
Contract No. W911NF-07-D0004.
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