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We show theoretically that periodically driven systems with short range Hubbard interactions offer a
feasible platform to experimentally realize fractional Chern insulator states. We exemplify the procedure
for both the driven honeycomb and the square lattice, where we derive the effective steady state band
structure of the driven system by using the Floquet theory and subsequently study the interacting system
with exact numerical diagonalization. The fractional Chern insulator state equivalent to the 1=3 Laughlin
state appears at 7=12 total filling (1=6 filling of the upper band). The state also features spontaneous
ferromagnetism and is thus an example of the spontaneous breaking of a continuous symmetry along with
a topological phase transition. We discuss light-driven graphene and shaken optical lattices as possible
experimental systems that can realize such a state.
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Fractional Chern insulators (FCIs) have been discovered
numerically in lattice models of two-dimensional elect-
ronic systems [1–5]. They emerge as the ground state of
repulsively interacting fermions that partially fill Bloch
bands with a nontrivial topological attribute, namely, a
nonvanishing Chern number [6]. The time-reversal sym-
metry (TRS) breaking electronic hopping integrals on the
lattice, that are responsible for the band topology, take the
role played by the strong magnetic field in the fractional
quantum Hall effect. FCIs show that fractional quantum
Hall states can appear more generically than previously
assumed and do not rely on the specific energetical or
analytical properties of Landau levels.
For a system to support a FCI ground state, the ener-

getics have to satisfy specific conditions. For example, if
the topological band is spectrally flat [1,7,8] or the energy
scale of the repulsive interaction exceeds the energy scales
of the band [9], FCIs are favored. This is why the
experimental discovery of FCIs is still a formidable exper-
imental challenge, despite the recent experimental realiza-
tion of its “noninteracting” parent band structure, the Chern
insulator or anomalous quantum Hall effect [10]. Needed
are systems with a large amount of tunability, to meet
both the topological and energetical requirements. Ultracold
atomic gases in optical lattices [11], artificial graphene [12],
photonic crystals [13], and light-driven solid state systems
[14–16] are such tunable platforms, all of which have been
shown to potentially host topological band structures. In
particular, it has been proven by several theoretical works
that circularly polarized light allows us to open a gap at the
Dirac cones of the honeycomb lattice, leading to a topo-
logically nontrivial state characterized by chiral edge states
[15,17–19]. The resulting periodically driven steady state
is described by using the Floquet theory and is thus called

a Floquet Chern insulator. The key ingredients for its
emergence are the critical nature of the Dirac electrons in
graphene and the time-reversal symmetry breaking provided
by the nonlinearly polarized light [19].
In this Letter, we show that periodically driven systems

offer a novel tunable platform to realize robust FCI states
experimentally. We shall focus first on the periodically
driven honeycomb lattice, a system that can be imple-
mented physically in light-driven graphene or shaken
optical lattices [11,20,21] (see Fig. 1). By means of
numerical exact diagonalization we show that such a
system at 7=12 total filling, when it is periodically driven

FIG. 1 (color online). A graphene flake is irradiated with light
of frequency ω, while a gate voltage is applied via a back gate
(yellow) to change the band filling. In the high-frequency regime,
the incident light changes the single-particle band structure into
an effective Floquet band structure that acquired a gap at the
Dirac points (shown are the Floquet bands for the electric field
configuration Ax ¼ Ay ¼ 1.7, ϕ ¼ π=2, and ω ¼ 10t1).
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by circular polarization and high intensity, realizes a
ferromagnetic FCI steady state, which we call a Floquet
fractional Chern insulator (FFCI). The FFCI state is
characterized by a threefold topological ground state
degeneracy and a contribution to the Hall conductivity
of σH ¼ 1

3
ðe2=hÞ. Furthermore, we prove that the full

SU(2) spin-rotation symmetry of the model Hamiltonian
(in the case of driven graphene, the light field does not
couple to the spin and the spin-orbit coupling is negligible)
is spontaneously broken for a ferromagnetic steady state,
and gapless magnon excitations emerge, coexisting with
the FFCI ground state. In addition, we will show that the
FFCI state we find is remarkably robust, since it appears for
different types of polarizations. The external parameters of
the driven field can therefore be used to optimize externally
the FFCI state. We conclude by evidencing that the FFCI
state appears generically when driving systems that feature
critical Dirac fermions, by showing its emergence also in
the π-flux model on the square lattice [22]. We emphasize
that we do not rely on a mean-field approximation to obtain
these results [23].
Floquet approach for the ac driven honeycomb lattice.—

We model irradiated monolayer graphene by considering
spinful fermions that populate a honeycomb lattice Λ and
interact repulsively via their on-site (U) and nearest-neighbor
(V) electronic densities ni;σ , for i ∈ Λ and σ ¼ ↑, ↓:

HðτÞ ≔ H0ðτÞ þHint;

Hint ≔ U
X

i

ni;↑ni;↓ þ V
X

hi;ji

X

σ;σ0
ni;σnj;σ0 : (1)

For the single-particle Hamiltonian H0ðτÞ, we adopt the
convention used in Refs. [1,24]. The time dependence is
induced via the electromagnetic vector potential Aðτ;ϕÞ ¼
(Ax sin ðωτÞ; Ay sin ðωτ þ ϕÞ; 0)T of the external field,
where ω is the frequency of the driving, ϕ is the phase
difference,Ai ¼ eEia=ωme, e is the electron charge,me is its
mass, a is the lattice spacing, and Ei is the ith component of
the driving field. Within perturbation theory to order 1=ω
considered in this work, the ac field affects only the single-
particle Hamiltonian H0ðτÞ, while the density-density inter-
action remains as in the undriven case. The reason is that
for a density-density interaction, which commutes with the
position operator to which the time-dependent electric field
couples, further n-body terms in the effective Hamiltonian
are generated only at the order of Un−1=ωn in perturbation
theory.
Floquet theory provides a powerful formalism to study

periodically driven systems. It allows us to easily obtain
effective time evolution operators, especially in the regime
where the driving frequency is the dominant energy scale
[25]. The single-particle Hamiltonian, which enters the
time-dependent Schrödinger equation, can be obtained by
following Ref. [19], as we explain in the Supplemental
Material [26], and has the Fourier decomposition

Hq
0;k ¼

�
0 ðρ−qk Þ�
ρqk 0

�
; ρqk ¼

X

j

tFj;qe
ik·aj ; (2)

where q ∈ Z labels the Fourier component in frequency
space and the hopping integrals are given by
tF1;q ¼ t1JqðAyÞeiqϕ, tF2;q ¼ t1JqðAþÞeiqΨþ , and tF3;q ¼
t1J−qðA−Þe−iqΨ− . Here, t1 is the nearest-neighbor
hopping integral for fermions on the honeycomb
lattice, and JqðAÞ denotes the Bessel functions of
the first kind. The arguments of the Bessel functions
contain the explicit electric field configuration

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3A2

x=4Þ þ ðA2
y=4Þ � ð ffiffiffi

3
p

=2ÞAxAy cosðϕÞ
q

, and

the phase factors are given by Ψ� ¼ arctan fAy sinðϕÞ=
½ ffiffiffi

3
p

Ax � Ay cosðϕÞ�g. Finally, we define a1¼ð0;0Þ,
a2¼ð ffiffiffi

3
p

;3Þ=2, and a3¼ð− ffiffiffi
3

p
;3Þ=2 as the unit cell

vectors of the honeycomb lattice.
In this work we focus on the high-frequency regime

(ω ≫ t1), where the system dynamics can be accurately
described by a static effective Hamiltonian, which can be
expanded order by order in t1=ω. To zeroth order in t1=ω,
the hopping integrals are renormalized by zeroth-order
Bessel functions only, without TRS breaking terms. To first
order in t1=ω, corrections to the effective Hamiltonian must
be considered due to hybridization with the nearest Floquet
bands. Importantly, for nonlinear field polarization, TRS
is broken by these corrections, a prerequisite to realize a
Floquet Chern insulator. The effective Hamiltonian for
long-time dynamics is then defined by including higher
Fourier components of the Hamiltonian, leading to the
2 × 2 Floquet-Bloch Hamiltonian (for details see the
Supplemental Material):

Heff;k ¼ H0
0;k −

1

ω
ð½H0

0;k; H
−1
0;k� − ½H0

0;k; H
1
0;k�

þ ½H−1
0;k; H

1
0;k�Þ: (3)

Then, the effective single-particle Hamiltonian expressed
by using the second-quantized operators c†k;σ ¼
ðc†k;σ;A; c†k;σ;BÞ, that create an electron with momentum k
and spin σ in sublattice A and B, respectively, reads

Heff;k ≔
X

k∈BZ

X

σ¼↑;↓

c†k;σHeff;kck;σ: (4)

The Hamiltonian (4) has two pairs of spin-degenerate
bands that touch in two Dirac points for t1=ω → 0. The
correction to first order in t1=ω in the 2 × 2 Floquet-Bloch
Hamiltonian Heff;k is proportional to the third Pauli
matrix σz. Because of the TRS breaking, it can thus poten-
tially open a Haldane-type gap [6] in the spectrum, so that
the resulting spin-degenerate bands can acquire a Chern
number c1 ¼ �1 for each spin species. The phase diagram
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for different externally tunable parameters is shown
in Fig. 2.
It is worth emphasizing that, in the high-frequency limit

relevant for this work, the Hamiltonian (4) is a time-
independent effective Hamiltonian that governs strobo-
scopic evolution. Therefore, it allows us to fill the bands
as in the case of time-independent systems, avoiding dealing
with the electronic occupancy of Floquet sidebands.
Exact diagonalization results.—We are now going to

show that the ground state of the Floquet Hamiltonian
Heff þHint, and with this the steady state of the driven
Hamiltonian (1), can be tuned into a FFCI by controlling
(i) the filling of the system with fermions and (ii) the
amplitude and phase of the driving field. The emergence of
a FFCI depends crucially on the ratios between the energy
scales of the single-particle band gap Δ, the single-particle
band width W, and the repulsive electron-electron inter-
actions, where mathematical band flatness is not always the
optimal choice [28]. In graphene, the interaction parameters
are given by U ¼ 3t and V ¼ 2t [29]. We neglect further-
range order interactions, which in principle could lead to
additional FCI states at different filling fractions [2].
Choosing incident light with amplitude Ax ¼ Ay ¼ 1.7
and the phase shift ϕ ¼ π=2, for example, results in an
Heff with Δ=W ¼ 0.6. We study the system above half
filling, so that the upper spin-degenerate band of Heff is
partially filled. Given the size of the single-particle gapΔ, it
is reasonable to approximate the states in the lower band to
be occupied with probability one, even in the interacting
many-body ground state [9]. We thus ignore those single-
particle states and project the degrees of freedom of the
system to the upper spin-degenerate band of Heff by means
of the projector P and to study the Hamiltonian

Hproj ¼ PHeffPþ PHintP: (5)

Previous studies have shown that FCI ground states
equivalent to the 1=m Laughlin state of the fractional
quantum Hall effect in Landau levels emerge quite generi-
cally if a flat band with Chern number c1 ¼ 1 is populated
with spinless fermions at a filling ν ¼ 1=m, m ∈ Z
[1–3,24]. In contrast, we are considering a dispersionful
band with Chern number c1 ¼ 1 that is partially filled with
spinful fermions in such a way that the Hamiltonian is
SU(2) spin-rotation symmetric. In anticipation of a sponta-
neous breaking of the SU(2) symmetry by the many-body
ground state, we therefore study the system at ν ¼ 1=ð2mÞ
filling to obtain a FFCI that is equivalent to a ν ¼ 1=m
Laughlin state. We have performed numerical exact diag-
onalization of the Hamiltonian (5) on lattices with Lx ×
Ly ¼ 4 × 3 and Lx × Ly ¼ 4 × 6 unit cells with N ¼ 4
and N ¼ 8 fermions, respectively, with periodic boundary
conditions in place. Good quantum numbers of the
many-body states are the total spin S ¼ 0;…; N=2,
the total spin-z component Sz ¼ −N=2;…; N=2, and the
center of mass momentumQ ∈ ½0; Lx × Ly − 1�. All results
and conclusions presented below extend to both lattice
sizes, and we focus on the Lx × Ly ¼ 4 × 6 lattice here,
delegating the consistency check with Lx × Ly ¼ 4 × 3 to
the Supplemental Material.
We observe that the low-energy states have both exact

and approximate degeneracies: In each of the (N þ 1)
sectors of Sz, three low-lying states are found which are not
exactly, but approximately, degenerate. Each of these three
states has an exactly degenerate partner in every other Sz
sector (see Fig. 3). The total ground state degeneracy that

FIG. 2 (color online). Topological phase diagram of periodi-
cally driven graphene at a high-frequency regime (ω ¼ 10t1) for
circularly polarized light. The phase difference ϕ and the field
amplitude Ax ¼ Ay allow us to tune the Chern number of the
lower spin-degenerate bands of the effective Floquet-Bloch
Hamiltonian (3) between c1 ¼ −1 and c1 ¼ þ1. The black dot
indicates the parameter values for which exact diagonalization
calculations are presented in Figs. 3 and 4.

FIG. 3 (color online). Low-lying portion of the energy spectrum
of Hamiltonian (5) on a Lx × Ly ¼ 4 × 6 with N ¼ 8 particles.
Encircled is the ground state manifold with threefold topological
(quasi)degeneracy of the fractional Chern insulator and
(N þ 1 ¼ 9)-fold degeneracy as a precursor of spontaneous
symmetry breaking toward a ferromagnetic phase in the thermo-
dynamic limit. The good quantum numbers total momentum
Q ¼ kx þ Lxky, total spin S, and total spin in z direction Sz are
indicated.
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we anticipate in the limit of large particle number N is thus
3ðN þ 1Þ. As all ground states have the maximum spin
S ¼ N=2, we interpret the exact (N þ 1)-fold degeneracy
as a finite-size precursor of a spontaneous breaking of the
SU(2) symmetry towards a ferromagnetic ground state in
the thermodynamic limit. Both the tower-of-states structure
[30] in the spectrum as a function of S [Fig. 4(b)] and the
exactness of the degeneracy support this conclusion
(the order parameter Sz of ferromagnetism commutes with
the Hamiltonian, thus rendering the ground state degen-
eracy exact already for finite systems). In contrast, the
threefold approximate degeneracy in each Sz sector is of
topological origin. It is the m-fold topological ground state
degeneracy of a 1=m Laughlin state on the torus in the case
m ¼ 3. The nonlocal Wilson-loop order parameter does not
commute with the Hamiltonian, rendering the degeneracy
approximate in the finite system. Further supporting argu-
ments that the three low-lying states in each Sz sector are
indeed topologically ordered FFCI states are the following.
(i) By inserting a flux in the torus (which is equivalent to
changing the boundary conditions from periodic to twisted
[31]), the three states permute and return to their original
order after three flux quanta [see Fig. 4(a)]. This evidences
charge fractionalization with quasiparticles of charge e=3
and indicates that the topological ground states survive in
the thermodynamic limit. (ii) The three states occur at the
momentum sectors Q that are predicted by the counting
rule of Ref. [3] that is based on a 1=3 Laughlin state.
(iii) Any superposition of the three ground states has a
nearly constant charge density in position space, which
excludes that these states would form a charge-density
wave in the thermodynamic limit (see Supplemental
Material).

From the presented results, we conclude that the steady
state of the driven honeycomb lattice with spinful fermions
at 7=12 total filling (or 1=6 filling of the band above the
Dirac cone) is a ferromagnetic FFCI. This distinct driven
topological state has gapped charged excitations but
supports gapless spin excitations, namely, ferromagnetic
magnons. Remarkably, the state features both conventional
order and gapless topological order. Experimentally, its
signature is a fractional contribution of σH ¼ 1

3
ðe2=hÞ (in

addition to the integer contribution of the lower band)
defined for the driven system [32].
To certify the robustness of the FFCI state we have also

tested its stability under changing some of the conditions
discussed above. First, we have investigated its fate
upon changing to different light polarizations (using
Ax=Ay ¼

ffiffiffi
3

p
, 1=

ffiffiffi
3

p
as two examples). The FFCI is still

the ground state of the system as long as the Chern number
of the noninteracting band is c1 ¼ �1. Second, we have
investigated its appearance on a different lattice system.
In particular, we find that for spinless fermions on the
π-flux square lattice [22] with nearest-neighbor repulsive
interaction the ground state is also the FFCI whenever
(Ax ¼ Ay, ϕ) are such that the noninteracting bands have
c1 ¼ �1 (see Supplemental Material). Both of these
results evidence the ubiquitousness and robustness of the
FFCI state.
Possible experimental realizations.—The practical reali-

zation of this novel state in graphene possesses two
experimental challenges. The first is to reach incident
field amplitudes Ex ¼ Ey ∼ ω ≫ t1. Although it is in
principle possible to reach such a regime, today experi-
ments have explored only amplitudes of one order of
magnitude lower [33]. However, given the robustness
and tunability of the effect, it is conceivable that lower
frequencies and field amplitudes can in fact be sufficient
to access the FFCI state in the thermodynamic limit.
The second experimental issue is reaching the necessary
filling factor of graphene’s band structure. In particular, the
electron density at 1=6 filling of the upper band is of the
order of 1 × 1014e=cm2, still below the van Hove singu-
larity in graphene. Even higher values up to the van Hove
singularity have already been reached by chemical doping
[34], and there are promising other routes by using, for
example, polymer electrolytes [35]. Alternatively, shaken
optical lattices [11,20,21,36] can provide a platform to
realize the spinless version of the effect with experimen-
tally available amplitudes of the driving field. In this
context, time of flight measurements in the spirit of
Ref. [37] could be used to distinguish the FFCI phase.
Finally, other 2D materials with Dirac electrons such as
silicene [38] can potentially be used to tune the band
structure parameters and host similar phases.
In summary, we have found that spinful fermions on the

honeycomb and π-flux square lattice, when coupled to
external polarized fields, undergo an interaction-driven

(a) (b)

FIG. 4 (color online). (a) Spectral evolution of the energy
spectrum of Fig. (3) in the sector with Sz ¼ 1 upon inserting a
flux γy into the system, which is synonymous to twisting the
boundary conditions in the y direction with a complex phase eiγy .
The three fractional Chern insulator ground states evolve inde-
pendently of the rest of the spectrum and trade places, which
signals their topological degeneracy and the charge fractionali-
zation. (b) The energy spectrum of Fig. 3 plotted against the total
spin SðSþ 1Þ reveals the tower of states which evidence the
ferromagnetic nature of the ground state.

PRL 112, 156801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

156801-4



topological phase transition to a FFCI state that features
topological order and spontaneous ferromagnetic order.
Moreover, the robustness and tunability of the FFCI state,
appearing for different parameters, polarizations, and
lattices, evidences that periodically driven systems offer
an experimentally appealing platform to realize FCI states.
Our work thus opens up a promising route to achieve
tunable realizations of elusive interacting fermionic and
bosonic phases by periodically driving interacting systems.
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