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We nonperturbatively investigate the ground state magnetic properties of the 2D half-filled SU(2N)
Hubbard model in the square lattice by using the projector determinant quantum Monte Carlo simulations
combined with the method of local pinning fields. Long-range Néel orders are found for both the SU(4) and
SU(6) cases at small and intermediate values of U. In both cases, the long-range Néel moments exhibit
nonmonotonic behavior with respect to U, which first grow and then drop as U increases. This result is
fundamentally different from the SU(2) case in which the Néel moments increase monotonically and saturate.
In the SU(6) case, a transition to the columnar dimer phase is found in the strong interaction regime.
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The ultracold atom systems have opened up a wonderful
opportunity for studying novel phenomena that are not easily
accessible in usual solid state systems. For example, the large-
spin ultracold alkali-metal and alkaline-earth-metal fermions
exhibit quantum magnetic properties fundamentally different
from the large-spin solid state systems such as transition metal
oxides [1]. In solids, Hund’s rule coupling combines several
electrons on the same cation site into states carrying large spin
S. However, the symmetry of these systems is usually only
SU(2). The leading order coupling between two neighboring
sites is mediated by exchanging one pair of electrons no
matter how large S is; thus, quantum spin fluctuations are
suppressed by the 1/S effect. In contrast, large-hyperfine-
spin ultracold fermion systems which means thats of SU(2N)
and Sp(2N). For the simplest case of spin % a generic Sp(4)
symmetry was proved without fine tuning, which includes the
SU(4) symmetry as a special case [2]. Such a high symmetry
gives rise to exotic properties in quantum magnetism and
pairing superfluidity [3—12]. Furthermore, large-spin alka-
line-earth-metal fermion systems have been experimentally
realized in recent years [13—15]. In particular, a SU(6) Mott
insulator of '73Yb has also been observed [1,16]. The above
theoretical and experimental progress has stimulated a great
deal of interest in exploring novel properties of strongly
correlated systems with high symmetries [17-23].

The SU(2N) Heisenberg model was first introduced into
condensed matter physics to apply the large-N technique to
systematically handle strong correlation effects in the
context of high T'. cuprates [24-28]. It was found that on
2D bipartite lattices the SU(2) Heisenberg model displays
long-range Néel ordering [29]. As 2N increases, enhanced
quantum fluctuations suppress Néel ordering and the ground
states eventually become dimerized [27,28]. This transition
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has been observed by quantum Monte Carlo (QMC)
simulations [30-35] for certain representations of the
SU(2N) symmetry [36]. However, for the self-conjugate
representations, a consensus has not been achieved yet. A
variational Monte Carlo study [34] found Néel ordering
when 2N =2 and 4, and columnar dimer ordering for
2N > 6. However, in a determinant QMC calculation [35],
dimer ordering was found at 2N > 6 in agreement with the
variational QMC study, while for the SU(4) case, neither
Néel nor dimer ordering exists in the Heisenberg limit.
The above Heisenberg-type models neglect charge fluc-
tuations. The interplay between charge and spin degrees of
freedom is contained in the SU(2N) Hubbard model
[21,37,38]. However, owing to the lack of nonperturbative
methods, the SU(2N) Hubbard model receives much less
attention. To the best of our knowledge, a systematic
nonperturbative study of the ground state properties of
the 2D half-filled models is still missing. It is even not clear
whether Néel or dimer ordering exists in the weak-,
intermediate-, and strong-coupling regimes, respectively.
In this Letter, we perform a nonperturbative determinant
QMC study on the half-filled SU(2N) Hubbard model in
the 2D square lattice. The ground state magnetic properties
are investigated by using the local pinning-field method,
which directly measures the spatial decay of the induced
order parameters [39]. Long-range Néel order is identified
at weak and intermediate values of U in the SU(2N)
Hubbard models of 2 < 2N < 6 we studied. In the cases of
SU4) and SU(6), the Néel moments first grow then drop
with increasing U. Furthermore, a transition from the Néel-
ordering phase into the columnar dimer-ordering phase is
observed at a large value of U in the SU(6) case. This
transition is conceivably owing to the competition between
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the weak-coupling physics of Fermi surface nesting and
strong coupling local moment physics.

We consider the SU(2N) Hubbard model in the 2D
square lattice with the periodic boundary condition as

. U

H= —t(%l(c}acja +He)+ Zi:(n,- —N)2 (1)
where ¢ is the nearest neighbor hopping integral (fr = 1
below); U is the on-site repulsion; « is the spin index
running from 1 to 2N; n; = Ziﬁ | Niq 1s the total fermion
number operator on site i. Equation (1) possesses the
particle-hole symmetry ¢;, — (—1 )"cja, which means that it
is at half filling. In this case, it is well-known that Eq. (1) is
free of the sign problem for all the values of N.

We employ the projector QMC method to investigate its
quantum magnetic properties in the ground states. In QMC
studies, the long-range ordering is usually obtained through
the finite-size scaling of the corresponding structural factors,
or, correlation functions. Assuming that the system size is
L x L, the extrapolated values as L — oo are proportional to
the magnitude square of order parameters. Thus it is difficult
to distinguish the weakly ordered states from the truly
disordered ones. For this reason, there has been a debate
whether a quantum spin liquid phase exists near the Mott
transition in the honeycomb lattice [40-44]. To overcome
this difficulty, we use the pinning-field method [39,44], and
measure the spatial decay of the induced order parameters.
Order parameters instead of their magnitude square are
measured, and thus numerically they are more sensitive to
weak orderings. This method has also been used in the
projector QMC method recently [44]. To decouple the
interaction term, we adopt the Hubbard-Stratonovich trans-
formation in the density channel, which involves complex
numbers [45]. We have designed a new discrete Hubbard-
Stratonovich decomposition that is exact for the cases from
SU(2) to SU(6) Hubbard models, and the algorithm details
can be found in the Supplemental Material [46]. Unless
specifically stated, the following parameters are used in
simulations: the projection time = 240 and the discretized
imaginary time step Az = 0.05.

Next we use the pinning-field method to study the
magnetic long-range order of the SU(2N) Hubbard model.
We define the SU(2N) generators as S = ¢} c; ;-
(6% /2N)n;. Athalf filling, in the Heisenberg limit in which
charge fluctuations are neglected, each site belongs to the
self-conjugate representation with one column of N boxes.
Without loss of generality, the classic Néel state configu-
ration can be chosen as follows: each site in sublattice A is
filled with N fermions from components 1 to N, while that
in sublattice B is filled with components from N + 1 to 2N.
We define the magnetic moment operator on each site i as

1 N 2N
mi:ﬁ{;Si - > s } )

a=N+1

For the configuration defined above, the value of the classic
Néel moment is m; = (—1)’1. Within the zero temperature
projector QMC method, good quantum numbers are con-
served during the projection. Thus we use a pair of pinning
fields on two neighboring sites with a Néel configuration to
maintain the relation (G|)_;5¢*|G) = 0 for every a. The
pinning-field Hamiltonian is

HPi“»” = 2Nhiojo{mi0 - mjo}’ €

where i, and j, are two neighboring sites defined as i, =
(1,1) and j, = (2, 1), respectively. The initial trial wave
functions can be chosen as the half-filled plane-wave states.
The Hamiltonian Eq. (1) plus Eq. (3) remains free of the sign
problem at half filling.

Because the pinning fields in Eq. (2) break the SU(2N)
symmetry, the induced magnetic moments prefer the
direction defined in Eq. (2). The distribution of m; is
staggered with decaying magnitudes as away from two
pinned sites iy and j,. The Néel order parameter is its
Fourier component at the wave vector Q = (x, x) defined
as my(L) = (1/L*)Y",(—=1)'m;. The long-range order m
can be extrapolated as the limit of

This is because the Fourier component of the pinning field
at Q is hy = 2h,»0j0/L2, which goes to zero as L — oo for
any finite value of A, ; .

To illustrate the sensitivity of the pinning-field method to
weak orders, we present the simulations for the SU(6) case
of Eq. (1) with U = 4. The finite-size scalings of m,(L)
are presented in Fig. 1 for two different values of 4; ; =1
and 2. Their extrapolated values as 1/L — 0 are 0.0261 +
0.0008 and 0.0253 + 0.0009, respectively, which are con-
sistent with each other and confirm the validity of this
method. Such a small moment is hard to identify using the
finite size scaling of the structural factors, as shown in the
Supplemental Material [46] and related works [40,42,44].
Another observation is that the induced values of mq(L)
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FIG. 1 (color online). Finite size scaling of the residual Néel
moment m (L) vs 1/L under pinning fields described by Eq. (3)
with &; ;= 1 and 2. The largest value of L is 16. The quadratic
polynomial fitting is used. Error bars are smaller than symbols.
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are weaker at h; ; =2 than those at h;; =1 at finite
values of L, which shows nonlinear correlations between
the pinning centers and the measured sites. Certainly they
converge in the limit of 1 /L — 0. In the following, we only
present the results of 7; ; = 2.

One may question whether the pinning-field method
overestimates the tendency of long-range ordering. In the
Supplemental Material [46], we apply it to the 1D SU(2)
and SU(4) Hubbard chains at half filling. In the SU(2) case,
the ground state is known as a gapless spin liquid, while in
the SU(4) case, it is gapped with dimerization. The pinning-
field method shows the absence of long-range Néel order-
ing in both cases and the asymptotic behavior of power-law
spin correlations in the case of SU(2). This further confirms
the validity of this method.

We further test the validity of the pinning-field method in
the extensively studied half-filled SU(2) Hubbard model in
the square lattice by the QMC method [47,48]. The long-
range Néel ordering we obtained based on the pinning-field
method is consistent with that in previous QMC literature
based on the finite-size scaling of structure factors. Our
results are shown in the Supplemental Material [46]. The
long-range Néel ordering appears from weak to strong
interactions. The extrapolated values of m, increase as U
goes up, and begin to saturate around U = 10. At U = 20,
mg = 0.297 £ 0.002, which is in a good agreement with the
long-range Néel moment 0.3070(3) of the SU(2) Heisenberg
model [49]. This behavior is well known [47,48]: as U goes
up, charge fluctuations are suppressed, and thus the low
energy physics is described by the Heisenberg model.

Next we simulate the SU(4) Hubbard model, and
the magnetic ordering is presented in Fig. 2. Similarly to the
SU(2) case, long-range Néel ordering appears for all the
values of U < 20. At each value of U, the extrapolated long-
range Néel moment m , is weaker than that in the SU(2) case,
which is a result of the enhanced quantum fluctuations.
Moreover, a striking new feature appears: the relation m vs
U becomes nonmonotonic as shown in Fig. 4 below. The Néel
moment 1, reaches the maximum around 0.178 + 0.008 at
U = 8, and then decreases as U further increases. It remains
finite with the largest value of U = 20 in our simulations. Itis
not clear whether m, is suppressed to zero or not in the limit
of U — oco. A previous QMC simulation on the SU(4)
Heisenberg model shows algebraic spin correlations [35].
It would be interesting to further investigate whether the
algebraic spin liquid state survives at finite values of U.

With further increases in 2N, the Néel ordering is more
strongly suppressed by quantum spin fluctuations. The
finite-size scalings for the SU(6) case at different values of
U are presented in Fig. 3. For all the values of U < 14, we
find nonzero Néel ordering by using the quadratic poly-
nomial fitting. The extrapolated Néel moments m ¢ vs U for
the SU(6) case are plotted in Fig. 4. For comparison, those
of the SU(2) and SU(4) are also plotted together. Similar
to the SU(4) case, the long-range Néel moments are
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FIG. 2 (color online).  Finite size scalings of my(L) vs 1/L for
the half-filled SU(4) Hubbard model with different values of U.
The largest size is L = 16. The quadratic polynomial fitting is
used. Error bars of QMC data are smaller than symbols.

nonmonotonic, which reach the maximum around
U =~ 10. Strikingly, the Néel ordering disappears beyond
a critical value of U, which is estimated as 14 < U, < 16.

The low energy effective model of half-filled Hubbard
models in the strong-coupling regime is the Heisenberg
model. According to the large-N study of the SU(2N)
Heisenberg model with the self-conjugate 1V representa-
tion [27,28], dimerization appears in the large-N limit.
Thus the suppression of the Néel order at large values of U
is expected from the competing dimer ordering. To inves-
tigate this competition, we further apply the pinning-field
method to study the dimer ordering for the SU(6) Hubbard
model, and the results are presented in Fig. 5. The
following dimer pinning field is applied, which changes
the hopping integral of a bond ijj, [50],

Hpin,dim = _Atiojoz{cjo.acjo-a + H.C.}, (5)
a

where i, and j, are defined as before. The bonding
strength between sites i and i+X is defined as
d;y =3 (G|c},ciirq + He|G), where |G) is the ground
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FIG. 3 (color online).  Finite size scalings of my(L) vs 1/L for
the SU(6) Hubbard model at different values of U. The largest
size is L = 16. The quadratic polynomial fitting is used. Error
bars of QMC data are smaller than symbols.
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FIG. 4 (color online). The ground state Néel ordering of the 2D
half-filled SU(2N) Hubbard model in the square lattice. The
relations of long-range Néel moments my vs U are plotted for
2N =2, 4, and 6. For comparison, the SU(2) Heisenberg limit

result is plotted as the dotted line. The error bars are obtained
from the least square fittings with 95% confidence bounds.

state. We define the dimer order parameter at the wave
vector (7, 0) as

. 1 .
dimeo)(L) = 73> _(=1)"di, (©)

where i, is the x coordinate of site i. Following the same
reasoning to extrapolate the long-range Néel ordering as
before, we define the long-range dimer order parameter as
dim(, gy = lim; .., dimy(L). The finite-size scalings for
dim(, o) (L) are plotted in Fig. 5(a), which shows that the
columnar dimerization appears when U is above a critical
value U, which is also estimated around 14-16. It lies in
the same interaction regime that Néel ordering starts to
vanish. However, whether this transition is of second order
such that U, = U’ or it is of first order still needs further
numeric investigation. We also measure the dimerization at
Q = (z, z) induced by the pinning-field Eq. (5), defined as
dim, , (L) = (1/L*)>";(-1)'d; ,, whose finite-size scal-
ing shows the absence of long-range order.
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FIG. 5 (color online). Finite-size scalings of the dimer order
parameters in the half-filled SU(6) Hubbard model.
(a) dim,)(L) and (b) dim, (L) at wave vectors Q" = (z,0)
and Q = (=, ), respectively. The largest size is L = 16. Error
bars of QMC data are smaller than symbols.

The nature of the transition between the Néel and dimer
orderings is an interesting question. In the literature [51,52],
ring exchange terms are added to the SU(2) Heisenberg
model, which suppress Néel ordering and lead to dimeriza-
tion. However, our SU(6) case is dramatically different. The
SU(6) Néel ordering appears in the regime of weak and
intermediate interactions. In this regime ring exchanges are
prominent because they reflect short-range charge fluctua-
tions. Our results agree with the picture of Fermi surface
nesting because the Néel ordering wave vector Q = (x, 7) is
commensurate with the Fermi surface at half filling, while
dimerization is not favored because its wave vector Q' =
(7,0) does not satisfy the nesting condition [53]. On the
other hand, local moment physics dominates when deeply
inside the Mott insulating phase in the strong-coupling
regime. The exchange energy per site in the dimerized phase
is estimated at the order of N2J with J = 4>/ U, while that
of the Néel state is zNJ, where z is the coordination number.
Thus dimerization wins when both conditions of large-U
and large-N limits are met in agreement with previous
theoretical results on SU(2N) Heisenberg models [27].

Summary.—We have applied the method of local pinning
fields in QMC simulations to investigate quantum magnetic
properties of the 2D half-filled SU(2N) Hubbard model in the
square lattice. This method is sensitive to weak long-range
orders. Long-range Néel ordering is found for the SU(4) case
from weak to strong interactions. For the SU(6) case, a
transition from the staggered Néel ordering to the columnar
dimerization is found as increasing U. The conceivable
mechanism is the competition between the weak-coupling
Fermi surface nesting physics and the strong-coupling local
moment physics. The above QMC simulations may provide a
reference point for further investigating the even more chal-
lenging problem of doped SU(2N) Mott insulators.
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