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We study the triangular lattice Ising model with a finite number of vertically stacked layers and
demonstrate a low temperature reentrance of two Berezinskii-Kosterlitz-Thouless transitions, which results
in an extended disordered regime down to T ¼ 0. Numerical results are complemented with the derivation
of an effective low-temperature dimer theory. Contrary to order by disorder, we present a new scenario
for fluctuation-induced ordering in frustrated spin systems. While short-range spin-spin correlations
are enhanced by fluctuations, quasi-long-range ordering is precluded at low enough temperatures by
proliferation of topological defects.
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Introduction.—The antiferromagnetic triangular lattice
Ising model (TLIM) is the paradigmatic example of geo-
metric frustration [1–3]. Despite its simplicity, the TLIM
exhibits all the defining features of a highly frustrated
magnet. The extensive degeneracy of its ground state or
Wannier manifold, which comprises any state without three
parallel spins on the same triangle, leads to a residual
entropy density S ≈ 0.323kB. This property makes the
system very sensitive to perturbations, as is manifested
in the algebraic spin-spin correlations. Simple perturba-
tions, such as further-neighbor couplings, relieve the
frustration and induce long-range order (LRO) or quasi-
LRO [4–8]. The ground state degeneracy can also be lifted
via the order-by-disorder mechanism [9]. For instance, a
vertical 3D stacking of TLIMs produces a low-T partially
disordered antiferromagnetic (PDA) phase consisting of
two ordered sublattices with opposite magnetizations and
the third one that remains disordered [10–15]. By adding a
transverse field, we obtain the quantum Ising model (QIM)
that also contains a low-T PDA phase stabilized by
quantum fluctuations [16–18].
In this Letter, we show an exotic classical spin liquid

phase with unusual pseudocritical correlations in a simple
generalization of the TLIM, namely, a vertically stacked
finite number Nz of triangular layers. This new phase
consists of a line of pseudocritical disordered states.
Surprisingly, spins become more correlated at short dis-
tances with increasing temperature: the spin correlation
falls off like ∼r−ηðTÞe−r=ξ with the exponentially large
correlation length, ln ξ ∝ J=T, and the short-distance
effective power law decay becomes slower at higher T
(dη=dT < 0Þ [19]. This is similar to Villain’s order by
disorder [9]. However, while thermal fluctuations increase
short-distance spin-spin correlations, hence the stiffness of
the effective field theory, quasi-LRO sets in only when the
stiffness reaches a critical value necessary to suppress the
proliferation of topological defects.

Our study is in part motivated by recent advances in
film-growth techniques [20,21] and fabrication of artificial
spin systems [22]. The model Hamiltonian is

H¼ J
XNz

n¼1

X
hi;ji

σzi;nσ
z
j;n−Jz

X
i

XNz

n¼1

σzi;nσ
z
i;nþ1; J > 0; (1)

where σzi;n ¼ �1 is an Ising spin at site i of the nth layer,
and hi; ji runs over intralayer nearest-neighbor sites. We
use open (periodic) boundary conditions along the vertical
direction (in the ab plane). Although not essential, we
assume a ferromagnetic (FM) interlayer exchange Jz > 0.
Wewill see that the phase diagram ofH changes withNz,

but there is always an extended pseudocritical phase right
above T ¼ 0 [Fig. 2(b)]. The single-layer TLIM has no
phase transition at any finite T. For Nz > 1, while thermal
fluctuations also destroy the critical state at T ¼ 0, the
configurational entropy enhances the short-range in-plane
correlations, leading to the classical spin liquid phase.
For Nz < Nc1 the system remains disordered at any finite
T and the peculiar low-T state crosses over to the high-T
paramagnetic (PM) state. ForNc1 ≤ Nz < Nc2, fluctuations
induce a Berezinskii-Kosterlitz-Thouless (BKT) transition
to a critical phase that is destroyed by anotherBKT transition
at a higher temperature of order J. Conversely, the lowest-T
BKT transition defines a reentrant transition back to the
disordered low-T regime. Finally, for Nc2 ≤ Nz < ∞, a
PDA phase emerges in the middle of the BKT phase.
The degenerate ground states of the TLIM are related to

dimer coverings [6,23] and fully packed loops [24] on the
dual honeycomb lattice [25]. To account for the exotic low-
T physics, we derive a low-energy dimer model. Entropic
effects generate interdimer interactions and topological
defects that control the low-T physics and quantitatively
reproduce the results of our Monte Carlo (MC) simulations
of H. The global phase diagram is also obtained by a
different mapping of H into a single-layer QIM.
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Dimer coverings and effective low-T theory.—The
highly degenerate ground space of H is also a Wannier
manifold because it consists of FM vertical chains, which
can be treated as effective Ising variables. This manifold is
conveniently mapped onto the set of dimer coverings on the
dual honeycomb lattice [6,23] by placing a dimer on every
link that crosses a frustrated (i.e., up-up or down-down)
bond [see Fig. 1(a)]. Because each triangle has only one
frustrated bond, exactly one dimer is attached to each
honeycomb lattice site. The T ¼ 0 partition function of H
is mapped onto a partition function for dimers with the
same statistical weight for each dimer configuration.
By assuming jJzj < 2NzJ, we can include thermal

effects into an effective single-layer dimer model for
T ≪ jJzj. We first consider lowest-energy excitations that
create a single kink in a chain surrounded by three-up and
three-down chains. The minimum excitation energy is
2jJzj, because the interchain molecular field is zero.
Dressed by such kink excitations, these chains ( or
in the dimer representation) acquire a higher statistical
weight W ≈ 1þ ðNz − 1Þw, where w ¼ expð−2jJzj=TÞ
and the prefactor Nz − 1 accounts for the possible locations
of the kink along the chain. The finite-layer TLIM is then
described by an action

where the dimer-covering constraint is implicit and nið·Þ ¼
1 (0) if the plaquette i has (does not have) a designated
dimer configuration and K3 ¼ ðNz − 1ÞwþOðw2Þ. For

simplicity, we have omitted the second-order terms
(see the Supplemental Material [30]).
Because the low-T regime is close to the critical T ¼ 0

state, we pursue an effective field theory to study the
critical properties of the above dimer model. Following the
standard approach [33–39], we assign a discrete height hi
to each plaquette i such that hi changes by 2=3 (−1=3)
when crossing a dimer (empty link) while going counter-
clockwise around a site of one sublattice of the honeycomb
lattice [Fig. 1(a)]. The dimer constraints assure a consistent
height profile.
The critical spin states correspond to the roughing phase

of the coarse-grained height field hðrÞ described by a
Gaussian theory. Taking into account the locking potential
associated with the discreteness of the height variables, the
effective long-wavelength theory is given by a standard
sine-Gordon action,

Seff ¼
Z

d2r½πgð∇hÞ2þup cosð2pπhÞ�; p¼ 3: (3)

Here g is the stiffness and up¼3 is the locking potential
amplitude. In the Coulomb gas description equivalent
to Seff [40,41], the locking term carries an “electric”
charge p and its scaling dimension is Δp ¼ p2=ð2gÞ. The
locking potential becomes relevant for g > 9=4. Due to
the periodicity in the height variable the dimer operator
carries p ¼ 1, i.e., Δdimer ¼ 1=ð2gÞ, and we infer g ¼ 1=2
for the TLIM at T ¼ 0 [42] from the exact dimer
correlator [43–45].
The fluctuation-induced dimer interaction increases the

stiffness g because K3 > 0 favors the columnar dimer
state (flat landscape after coarse graining). In addition,
an exponentially small but finite concentration of defects
violating the constraint also appears at finite T. The
simplest example is a triangle of parallel spin chains,
which corresponds to a height dislocation Δh ¼ �2
[Fig. 1(b)]. These defects correspond to vortices of the
spin operator ψ [46] with winding number �1 [Fig. 1(e)].
The factor of 2 arises because the associated vertex operator
has p ¼ 1=2, i.e., ψ ∼ expðiπhÞ. Another crucial observa-
tion is that unitary (Δh ¼ �1) dislocations, namely mono-
mers [see Fig. 1(c)], are not physical excitations of the spin
model. Monomers are known to induce a three-state Potts
transition [38]. The absence of monomers implies that our
dimer model must undergo a BKT transition before reach-
ing the ordered state.
After introducing height dislocations with Δh ¼ �2,

the effective theory becomes a two-component Coulomb
gas [40,41]. The dislocations Δh ¼ �2 carry a “magnetic”
charge q ¼ �2 and have scaling dimensionΔv ¼ 2g. Thus,
although the bare defect fugacity yv is exponentially small
at low T, it is a relevant perturbation that destabilizes the
critical T ¼ 0 correlations: Δv ≈ 1 < d ¼ 2 for g ≈ 1=2.
However, as the height field becomes stiffer with increasing

FIG. 1 (color online). (a) Mapping to a dimer state (each arrow
stands for the majority spin of a chain). (b) Physical topological
defects corresponding to height dislocations Δh ¼ �2. (c)
Example of a monomer, which has no physical realization in
the spin model. (d) Renormalization-group flow diagram near the
lowest-T BKT transition (g ¼ 1). The trajectory schematically
shows the bare coupling of the spin model with Nz > Nc1, while
the yv ¼ 0 axis corresponds to the close-packed dimer model.
(e) Example of a vortex of the spin operator ψ ¼ σz1 þ σz2e

2πi=3 þ
σz3e

4πi=3 associated with an isolated topological defect (note that
three parallel spins correspond to jψ j ¼ 0, as expected for a
vortex core).

PRL 112, 155702 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

155702-2



T, the defect fugacity yv becomes irrelevant for g > 1,
where the magnetic charges form bound pairs [Fig. 1(d)].
This is a massless BKT phase extending up to g ¼ 9=4
where the locking term induces a flat (ordered) state. Our
MC simulations (discussed below) show that this is the
case for Nz ≥ Nc1. Thus, our low-T theory predicts an
extended pseudocritical regime right above T ¼ 0 due to
proliferation of unbounded defect triangles.
Quantum-classical mapping.—We can get a glimpse of

the complete phase diagram of H by using the quantum-
classical (QC) correspondence. We consider the single-
layer QIM,

ZQ ¼ Tr exp ð−HQ=TQÞ;
HQ ¼ J

X
hi;ji

σziσ
z
j − Γ

X
i

σxi ;
(4)

where σμi are Pauli matrices at site i and we use a
different symbol, TQ, for the temperature of the QIM.
The transverse field Γ selects the PDA ground state for
0 < Γ < Γc [17,18].
The order parameter space has a sixfold clock symmetry

corresponding to the group generated by Z3 lattice rotations
and C2 spin rotations around the x axis. Consequently,
the finite-TQ phase diagram is described by an effective
six-state clock model [16–18]. For 0 < Γ < Γc, the system
undergoes two BKT transitions enclosing an intermediate
critical phase with emergent U(1) symmetry [41] [see
Fig. 2(a)].
By discretizing the imaginary time ½0; T−1

Q Þ intoNτ ¼ Nz
slices, the QIM is mapped to H with a periodic boundary
condition in the vertical direction, whose effect becomes
negligible in the large Nz limit. The mapping is given by
T ¼ NτTQ and Jz=T ¼ −ð1=2Þ ln tanh½Γ=ðNτTQÞ� (see the
Supplemental Material [30] for details). While this map-
ping is exact only for Nτ → ∞, it is still a good approxi-
mation if Δτ≡ T−1

Q =Nτ ¼ T−1 is much smaller than the
correlation length along the imaginary time axis ξτ. In this
way we obtain

ΓðT; JzÞ ¼ Ttanh−1 expð−2Jz=TÞ (5)

Thus, although HQ per se does not exhibit “stiffness from
disorder” (i.e., LRO sets in at low TQ), varying T of the
classical system corresponds to changing both TQ and Γ in
the phase diagram of the QIM. As is shown in Fig. 2(a), we
expect three different scenarios depending on Nz and Jz=J
in H: (i) four BKT transitions with massless BKT and
massive PDA phases, (ii) two BKT transitions with an
intermediate massless phase, and (iii) a PM state at any
T > 0. In particular, the disordered low-T regime predicted
by the dimer model is confirmed by the QC mapping.
Finally, because ξτ ≃ Γ−1 for TQ ≪ J, Eq. (5) implies that
the QC mapping is only valid for T ≲ Jz.
MC results of the spin model.—We confirm the above

global phase diagram with direct MC simulations of
H (see the Supplemental Material [30] for details).
Below we fix Jz=J ¼ 0.5 and change Nz to demonstrate
the scenarios (i)–(iii). The order parameter of the PDA
state is the Q ¼ ð2π=3;−2π=3; 0Þ Fourier component of
the magnetizationΨ ¼ P

3
s¼1Ms exp½2ðs − 1Þπi=3�, where

Ms is the sth sublattice magnetization (1 ≤ s ≤ 3) [17].
We also compute C6 ¼ hRe½Ψ6�i=hjΨj6i to distinguish
LRO from quasi-LRO and the correlation function
GðrÞ ¼ Rehψ�ðrÞψð0Þi, where ψðrÞ ¼ N−1

z
P

nðσzr;n þ
σzrþe1;ne

2πi=3 þ σzrþe2;ne
4πi=3ÞeiQ·r is the local order param-

eter. C6 equals −1 (þ1) for perfect PDA (ferrimagnetic)
order [17]. If the system has LRO, R ¼ GðL=2; 0Þ=
GðL=4; 0Þ goes to unity for a lateral size L ≫ ξ, while
R → 0 in the PM phase. R is particularly useful for
detecting quasi-LRO because it becomes L independent
when the system is critical [47].
The exponent η [see Fig. 3(a)] characterizing the spin-

spin correlation function is estimated from the standard
finite-size scaling hypothesis in d ¼ 2 dimensions: jΨj ∼
L−η=2 (see Fig. S3 in the Supplemental Material [30]). This
is a convenient quantity to locate BKT transitions because it
takes a universal value. By analyzing scaling dimensions of
perturbative operators that become marginal at each tran-
sition, Jose et al. have shown [41] that η ¼ 1=4 (η ¼ 1=9)
at the BKT transition from the PM (PDA) state to the
critical BKT phase. For instance, for the reentrant BKT
transitions, we know that η ¼ 1=ð4gÞ from the scaling
dimension of ψ , while g ¼ 1 and g ¼ 9=4 for the lower and
upper BKT transitions, respectively. η changes continu-
ously between 1=4 and 1=9 in the critical phase.
Our simulation results for Nz ¼ 2, 6, and 24 are

summarized in Fig. 3, which clearly shows three distinct
behaviors corresponding to the scenarios (i)–(iii). For
Nz ¼ 24, the ratio R becomes L independent in two
temperature regimes in which the effective exponent η
interpolates between 1=4 and 1=9, indicating two extended
critical phases. A PDA phase, corresponding to a negative
C6, is sandwiched by these critical regimes. This LRO
disappears in the Nz ¼ 6 system (η never falls below 1=9).
Finally, for Nz ¼ 2, the RðTÞ curves for different L seem
to merge at low temperatures. However, the corresponding

FIG. 2 (color online). (a) Phase diagram of the QIM (4) (data
are MC results from Ref. [17]) and the trajectories of quasi-2D
classical systems (Jz=J ¼ 0.5; Nz ¼ 2, 6, and 24). The phase
boundaries are guides to the eye. (b) Phase diagram of the
classical model compared with the QC mapping.
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temperature range decreases systematically with increasing
L, implying a PM state at any finite T [see Fig. 3(e)].
Interestingly, while ηeff ≫ 1=4 confirms the PM nature at
T > 0, the exponent approaches the T ¼ 0 value (η ¼ 1=2)
from below. This is peculiar because the high-T trivial
exponent is ηeff ¼ 2 [48], and it indicates a crossover
from an unstable fixed point [49]. The boundaries of the
(T=J, Nz) phase diagram shown in Fig. 2(b) agree quite
well with the QC mapping. A small systematic shift is
caused by the different boundary conditions in the vertical
direction mentioned above.
The puzzling low-T physics can be explained with the aid

of our low-energy dimer model. By using the directed-loop
MC algorithm [50], we estimate the stiffness g by evaluating
the winding number fluctuations [35,36] of the dimer model
Sdimer (without defects) as a function of T, Nz, and Jz.
The exponent η ¼ 1=ð4gÞ must coincide with the effective
exponent obtained from our MC simulations in the pseudoc-
ritical regime of the spin model (hσi;nσiþr;ni ∼ r−ηðTÞe−r=ξ)

because ξ ∝ yv−1 is exponentially large in J=T and con-
sequently much larger than L. For Nz ¼ 6 and 24 we
simulate both the first- [Eq. (2)] and second-order (see the
Supplemental Material [30]) effective theories, while for
Nz ¼ 2we use only the first order expression because second
order contributions inw do not exist in this case. The excellent
agreement between these results and those obtained directly
from H (Fig. 4) confirms the validity of the effective low-T
dimermodel. The discrepancy at the lowest-T BKT transition
(where η ¼ 1=4) for Nz ¼ 6 and 24 is ≲5%. Further
discrepancies above the critical temperature indicate the
breakdown of perturbation theory because K3 [Eq. (2)]
becomes of order 1.
In summary, the reentrant BKT transition of the TLIM

with a finite number of vertically stacked layers leads
to a low-T pseudocritical spin liquid phase. Based on
a renormalization-group analysis of an effective dimer
model, we unveiled the “stiffness from disorder” phe-
nomenon that explains this exotic behavior. Our work
underscores the subtle interplay between thermal fluctua-
tions and topological defects. While thermal fluctuations
enhance spin-spin correlations, quasi-LRO sets in only
when the stiffness reaches the critical value required to
suppress proliferation of topological defects. The ubiqui-
tous nature of the Ising model offers alternative routes
for realizing this exotic low-T physics. In particular, the
multilayered TLIM described by H can be realized with
thin films of CsCoCl3 [4,51], buckled colloidal mono-
layers [52], or nanomagnet arrays [22].
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FIG. 3 (color online). (a) T dependence of the critical exponent
η. (b) T dependence of C6. (c)–(e) R ¼ GðL=2; 0Þ=GðL=4; 0Þ for
Nz ¼ 24, 6, and 2. The shaded regions in (a) and the insets of (c)
and (d) indicate the BKT phase.

FIG. 4 (color online). Comparison of exponents in the low-T
regime. The shaded region corresponds to the BKT phase (the
horizontal lines indicate η ¼ 1=4 and η ¼ 1=9). The dashed
(solid) lines are the results of simulating the dimer model with
interactions up to first (second) order in w (error bars are smaller
than the line width). The points are the results of MC simulations
of the spin model [Fig. 3(a)].
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