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For the first time in metallic glasses, we extract both the exponents and scaling functions that describe
the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field
model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones
(STZs). Using high temporal resolution measurements, we find the predicted, different statistics and
dynamics for small and large slips thereby excluding self-organized criticality. The agreement between
model and data across numerous independent measures provides evidence for slip avalanches of STZs
as the elementary mechanism of inhomogeneous deformation in metallic glasses.
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We show here that slowly compressed metallic glasses
deform plastically via slip avalanches of elastically coupled
weak spots. The weak spots are shear transformation
zones (STZs), which are collective rearrangements of
10-100 atoms [1].

During high temperature deformation of metallic glasses
(close to the glass transition), STZs operate independently
and the material flows homogeneously, in agreement with
STZ theory predictions over several orders of magnitude of
stress and strain rate [1,2]. At lower temperatures metallic
glasses deform inhomogeneously via intermittent slips on
narrow shear bands [3]. At low strain rates, these slip events
are manifested as sudden stress drops, called serrated flow.
Analytical [4,5] and computational investigations [6—8]
suggest STZ operation, but experimental support has been
challenging because slip events are both fast (with milli-
second durations) and highly localized (with thicknesses
<1 pum) [3]. Here we report experimental results on the
stress-drop dynamics and statistics, finding excellent agree-
ment with analytic model predictions for the slip avalanche
statistics of coupled weak spots or STZs.

Many other materials—including crystals and densely
packed granular solids—exhibit sudden slips during inelas-
tic deformation. Although the mechanisms of deformation
differ, the statistics and dynamics of the slip events are
described by the same simple mean-field model of plastic
deformation [9,10]. The model assumes that weak spots
slip and then restick whenever the local shear stress exceeds
a random local slip threshold. Weak spots in crystals are
dislocations, while in a metallic glass they are STZs.
Through elastic interactions a slipping weak spot can trigger
others to slip, creating a slip avalanche. In crystals the slip
can locally strengthen the material, while in metallic glasses
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it weakens it (through dilatation from STZ operation). For
weakening materials (such as metallic glasses) the model
assumes temporal threshold weakening for slipping sites
that lasts until the slip avalanche is completed. For these
materials, the model predicts two types of slip avalanches:
(1) small slip avalanches with a power law size distribution
and self-similar dynamics, and (2) less frequent but almost
regularly recurring large slip avalanches with cracklike
scaling behavior [9,10]. The model predicts both the
statistics and the dynamics of the slip avalanches. Its
agreement with experimental observations provides strong
evidence that shear banding in metallic glasses arises from
the collective slips of coupled STZs.

To test the model we conducted uniaxial compression
testing of metallic glass specimens in a high-stiffness,
precisely aligned loading train with a fast-response load
cell and high-rate data acquisition [Fig. 1(a) and the
Supplemental Material [11]]. During compression the
specimen deforms elastically until a shear band or slip
event initiates. This causes the displacement rate to
temporarily exceed the displacement rate imposed on the
specimen, resulting in a stress drop [Fig. 1(b)]. The size of
the stress drop is proportional to the slip size. Subsequently
the stress increases until initiation of another slip event.
We measure the stress drops in our metallic glass with
high temporal resolution to resolve the dynamics of the slip
events. This enables us to extract a wide range of predicted
scaling exponents and scaling functions that uniquely
identify the underlying slip statistics and dynamics.

We briefly summarize some of the model predictions for
the stress-drop statistics in weakening materials [9,10] and
the agreement with the experimental data. The comple-
mentary cumulative size distribution C(S), (i.e., the fraction
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FIG. 1 (color online).

Experimental setup and stress drops. (a) Schematic diagram of experimental setup. Two tungsten carbide platens

that are constrained by a steel sleeve compress the metallic glass specimen, see Ref. [15] for details. (b) Lower-right inset: applied stress
versus time. Main figure: magnification of data in the small window in the lower-right inset. Slip avalanches are manifest as sudden
drops in applied stress. Upper-left inset is further magnification, showing one stress drop. Black curves indicate raw, unfiltered stress

time series, and gray (red) curves indicate the time series after Wiener deconvolution.

of stress drops larger than size S) scales as C(S) ~ S7!/2 for
the (small) avalanches spanning the power law scaling
regime of sizes Sy < S < Spax [Fig. 2(a)]. Spin 1S the
experimental noise threshold [visible in Fig. 2(c)]. Spax 18
related to the low-frequency roll off w,;, of the power
spectrum P(w), which is the absolute square of the Fourier
transform of the stress-drop rate time series [see Fig. 2(d)].
The model predicts P(w) ~ 1/w? for frequency @ > @i,

and P(w) — constant for o < @y, Furthermore
Omin ~ 1/Tmax ~ 1/ (Smax)/?, with upper duration limit
Tmax and upper size limit S, of the scaling regime in
Figs. 2(a)-2(c). Figures 2(a)-2(d) show agreement of experi-
ments with predictions for C(S), the average avalanche
durations 7 at size S, the maximum stress-drop rate at size
S, and P(w) (before and after Wiener filtering, see the
Supplemental Material [11]) [9,10,16,17]. In each case the
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FIG. 2 (color online). Experimental avalanche statistics. Gray (red) dashed lines indicate model predictions [9,10,16,17].
(a) Distribution of stress-drop sizes (3744 avalanches). The scaling-regime [gray (red)] extends from 2.6 x 10° to 3.3 x 10° Pa,
limited by high frequency noise (left) and large cracklike stress drops (right). (b) Avalanche duration 7 versus size S. (c) Maximum
stress-drop rates versus stress-drop size. (b),(c) One cross per avalanche. Black dots indicate average duration (b) or average maximum
stress-drop rate (c) in one of 30 size bins. Error bars indicate 68% confidence interval. (d) Power spectrum of stress-drop rate time series,
before and after Wiener filtering.
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power law exponents of the observed serration statistics agree
with the model predictions. We also observe agreement with
eight other statistical measures, including predicted scaling
functions, as discussed in Figs. 3 and 4 and the Supplemental
Material [11]. Although some power law distributions of slip
sizes in metallic glasses have been studied [18], no exper-
imental data have previously been obtained for the slip
statistics and the dynamics, and no model predictions have
previously been shown to agree with the many different
statistical measures of Figs. 2—4 and the Supplemental
Material [11] that include not only multiple predicted scaling
exponents but also predicted scaling functions.

We use high temporal resolution measurements to test
the predicted dynamics of individual slip events, which are
sensitive to key assumptions of the model. Adding inertial
or weakening effects [21-24] or a delayed damping term
[25] to the model changes its predictions for avalanche
dynamics [24-26] even though they may (or may not)
affect the critical exponents of the slip statistics (Fig. 2).

The model predicts the temporal profiles of the small
avalanches, i.e., the stress-drop rate as a function of time
averaged over all slips of similar duration 7'. Figures 3(a) and
3(b) compare the experimental profiles, scaled by their
duration 7', to the model predictions. The measured profiles
look symmetric, as shown more clearly in Figs. 3(c), 3(d),
and 4(a), in remarkable agreement with the simple mean field
model that neglects both inertia and delay effects. As shown
in Fig. 4(b) models with inertial-weakening effects predict
asymmetric profiles that are tilted to the right [25,26], while
models with delayed damping effects predict profiles tilted

to the left (as observed for Barkhausen noise and large
earthquakes) [25,27-29]. In the inset to Fig. 4(c) we show
average avalanche profiles for four different avalanche sizes
S (rather than durations 7). The avalanche profiles collapse
onto the predicted symmetric scaling function when both
axes are rescaled by the predicted factor S~1/2.

The comparison of scaling functions in Figs. 3 and 4 is a
much more stringent test of the model than any traditionally
used discrete set of power-law exponents. The extensive
tests of slip statistics (Fig. 2 and the Supplemental Material
[11]) and slip dynamics (Figs. 3 and 4) thus confirm that
inhomogeneous deformation of metallic glasses proceeds
via slip avalanches of STZs. Furthermore, the data are
consistent with the model prediction that inhomogeneous
deformation of metallic glasses is an ordinary (tuned)
critical phenomenon with a limited scaling regime, as
opposed to a self-organized critical phenomenon [18]
(which would require self-similarity to apply to all ava-
lanches, small and large). The results indicate that inertial
and delay effects are negligible for the slip statistics and
dynamics of the small avalanches.

The two types of avalanches (small and large) predicted
by the model and observed in the experiments correspond
to different modes of shear propagation (Fig. S3 in the
Supplemental Material [11]). Small slips result from
progressive deformation, i.e., a propagating shear front
with little or no slip occurring behind the front. Large slips
are akin to a mode II crack with uniform sliding along the
entire shear plane [9,10]. In the experiments, the small slips
occur when a shear band nucleates at a stress concentration
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FIG. 3 (color online).
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Temporal avalanche profiles. (a) Average stress-drop rate divided (normalized) by its maximum rate. Profiles are

averaged over avalanches from small bins of their durations. Error bars indicate 68% confidence intervals in each bin. (b) Predicted
average profiles from mean field theory. For increasing avalanche duration 7', profiles become flatter, reflecting finite size effects,
parametrized by & [19]. (c),(d) Difference between the normalized stress-drop rate and the parabolic form predicted for small avalanches.
Larger avalanches deviate more from a parabola, consistent with the model prediction [19]. Note the clear symmetry of the profiles.
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FIG. 4. (color online).

Average avalanche profiles. (a) Stress-drop rate profiles divided by duration 7 averaged over all small

avalanches in the scaling regime. Agreement with the model prediction for fitting parameter k = 1880 £ 80 s~! (see the Supplemental
Material [11]). (b) Model predictions for average avalanche profiles for different model assumptions [19,25-27]. (c) Inset shows
unscaled average stress-drop rate profiles for different stress-drop sizes S, collapsed in the main figure (scaling both axes by a factor of
5-1/2). Agreement of collapse with predicted collapse scaling function (black dotted line, for nonuniversal values of the constants
A =398 x 10" and B = 2.18 x 10'!; see the Supplemental Material [11]) [20,29].

(such as the specimen-platen interface or an internal pore)
and propagates as a front away from the concentration into
a region of lower stress. The reduced driving stress causes
the shear band to arrest after only a limited amount of slip
and a correspondingly small stress drop. The large stress
drops occur when a shear band manages to span the
specimen, allowing continued simultaneous shear defor-
mation on a plane at (approximately) 45° to the loading axis
[30,31]. Slipping stops when the shear stress drops below a
critical stress at which point the shear band arrests. This
agrees with the model prediction of cracklike scaling
behavior of the large slip avalanches [9,10].

As assumed in the model, structural disorder and the
presence of defects cause the critical stresses at which slips
initiate or stop to vary throughout the specimen. For both
large and small avalanches, dilatation during STZ operation
leads to a decrease in viscosity of the material in the shear
band. This weakening is the key tuning parameter of the
model [9,10] that determines the size of the scaling regime
for the small avalanches.

The extent of the power-law scaling regime we observe is
limited by the occurrence of large, cracklike slip events.
Much larger power-law scaling regimes can be observed in
the absence of such events (as, for example, in certain
porous materials [32-34]). Furthermore, although it is
possible that merging of avalanches might change the
interpretation of our data, theory and simulations suggest
that merged avalanches would lead to larger deviations

from the mean-field theory than we observe at the current
time resolution [35,36]. We therefore expect the effects of
merged avalanches to be small, although measurements
with higher spatial and temporal resolution are required to
resolve this question definitively.

In summary, high temporal-resolution experiments on
the slow compression of metallic glasses for the first time
simultaneously measure slip statistics and slip dynamics.
The results agree with predictions of a simple mean field
model [9,10]. This agreement implies that inhomogeneous
deformation in bulk metallic glasses proceeds via slip
avalanches of weak spots, as assumed by the model, and
provides compelling experimental evidence for the impor-
tance of shear transformation zones in the initiation and
operation of shear bands. The prediction and observation of
two types of avalanches (small ones marked by scaling
behavior and large ones above the scaling regime) is
associated with two modes of shear band operation.
Small slip events correspond to nucleation and propagation
of shear fronts. Some small slips grow sufficiently large to
exceed a critical stress and transition into large slip events
with cracklike sliding across a mature shear band. The high
information content contained in the serration statistics and
the dynamic avalanche profiles allow discrimination among
competing models [19,37], suggesting that similar experi-
ments will provide new insights into deformation mecha-
nisms of other materials.
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Materials and methods.—Three-millimeter-diameter
rods of ZrysHf1,NbsCu;s 4Nij, ¢Alyy were prepared using
arc melting and suction casting and verified to be amor-
phous with x-ray diffraction. Rectangular parallelepiped
specimens 6 mm long with a cross-sectional area of 2 by
1.5 mm with tight dimensional tolerances (reported pre-
viously in Ref. [15]) were machined from the cast ingots.
Quasistatic uniaxial compression tests were performed at
a constant displacement rate and a nominal strain rate of
10~* s~ using a screw-driven Instron 5584 in a high-
stiffness, precisely aligned load train as shown in Fig. 1(a).
The stress data were acquired using a 60 kN Kistler
piezoelectric load cell with a 180 kHz low-pass filter.
The data were recorded using a Hi-Techniques Synergy
P system at a rate of 100 kHz with a 40 kHz low-pass filter.
The displacement data were acquired using an Epsilon Tech
3442 extensometer. Metallic glasses fail catastrophically
under uniaxial compression with fracture propagating
at speeds on the order of 170 m/s or faster [30]. For
specimens of this size, the fracture event occurs over an
elapsed time that is less than 12.5 us. High-speed imaging
confirms that the electronics of the system are unable to
accurately track this rapid fracture event due to the presence
of the low-pass filters. The fracture event therefore functions
as a unit impulse to the system, and the corresponding stress
versus time data are used as the unit impulse response for
the purposes of Wiener filtering (see the Supplemental
Material [11]). The durations of the slip events range from
0.73 to 21.1 ms, while the applied stress is recorded every
10 us; therefore, we record, on average, several hundred
data points during each stress drop, allowing us to extract
information about both the statistics of the stress drops as
well as the dynamics of individual slip events.
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