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Virtual phonons of a quantum liquid scatter off impurities and mediate a long-range interaction,
analogous to the Casimir effect. In one dimension the effect is universal and the induced interaction decays
as 1=r3, much slower than the van der Waals interaction ∼1=r6, where r is the impurity separation. The sign
of the effect is characterized by the product of impurity-phonon scattering amplitudes, which take a
universal form and have been seen to vanish for several integrable impurity models. Thus, if the impurity
parameters can be independently tuned to lie on opposite sides of such integrable points, one can observe
an attractive interaction turned into a repulsive one.
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The concept of zero-point energy has fascinated minds
ever since the inception of quantum mechanics. Beyond
being merely an inconsequential redefinition of the ground
state energy, it was shown by Casimir [1] that changes in
the zero-point energy can lead to observable forces bet-
ween uncharged conducting plates. Going beyond simple
planar geometries, recent developments in nanotechnol-
ogy [2–10] have stimulated intense efforts to understand
Casimir interactions between conducting objects of
arbitrary shape [11,12].
Zero-point fluctuations of the electromagnetic field

constitute only one example of a much broader class of
phenomena. Essentially any medium whose fluctuations
display long-range correlations, e.g., media with a con-
tinuously broken symmetry and associated Goldstone
mode(s) [13], induce long-range interactions between
perturbing objects that modify the spectrum of fluctuations.
Awell-known example of such media is a superfluid whose
Goldstone mode is the quantized sound mode or phonon.
Although 4He was the first system to exhibit the remarkable
properties of superfluidity, recent advances in ultracold
atom trapping and manipulation [14] have lead to an
unprecedented ability to study ultraclean bosonic or fer-
mionic superfluids subject to tunable spatial dimension-
ality, lattice configuration and interaction strength.
Perturbing objects or impurities can be controllably

introduced by transferring a fraction of atoms into a different
hyperfine state [15–17], or by admixing a different atomic
species [18–21]. As we show, such impurities immersed
in an interacting cold atom environment is a particularly
appealing setup. It gives rise to a long-range interaction,
which we hereafter denote as the Casimir interaction, due to
scattering of virtual phonons, the same mechanism lying at
the heart of the analogous photon-induced Casimir effect.
In addition, the cold-atom analog of the interaction has the
advantage of being continuously tunable both in magnitude

and in sign, a task which is hardly achievable in a linear
electromagnetic medium [22].
In most studies of Casimir interactions the analysis is

restricted to static configurations of objects or bounding
surfaces. The impurities in quantum liquids are typically
free to propagate under the influence of the induced
interactions. Therefore they must be regarded as mobile,
and in certain circumstances should be distinguished from
their static counterparts characterized by infinite effective
mass. As we discuss below, for a system of repulsively
interacting fermions in one dimension, this leads to a
qualitatively different asymptotic behavior of the induced
interaction between impurities.
Using an effective low-energy theory, we find a Casimir

interaction between mobile impurities in a one-dimensional
quantum liquid given by

UCasðrÞ ¼ −mc2
Γ1Γ2

32π

ξ3

r3
; (1)

where m is the mass of particles in the fluid, c is the sound
velocity, ξ ¼ ℏ=mc and the dimensionless parameters Γ1;2
are impurity-phonon scattering amplitudes discussed in
detail below.
Owing to the enhanced role of fluctuations in one

dimension, the Casimir interaction exhibits a decay law
∼1=r3 which is much slower than the van der Waals
interaction between neutral atoms UvdWðrÞ ∼ 1=r6 [23].
In accord with recent works on the single impurity problem
[24–27], we also find that Γ acquires a universal form in
terms of independently measurable thermodynamic char-
acteristics. At special points in parameter space where the
underlying model becomes integrable, the thermodynamics
can be extracted exactly, thus yielding the scattering amp-
litude, which has been seen to vanish identically in several
of these special cases, Γ ¼ 0 [24–27]. This has important
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implications for spinor condensates, which lie close to the
integrable SUð2Þ symmetric point, for which particles in
different hyperfine states have equal masses and nearly
equal interaction constants. It opens the possibility of
observing an attractive interaction turned into a repulsive
one when the impurity parameters are independently tuned
to lie on opposite sides of the integrable point.
Our results should be contrasted with theworks of [28–30]

who considered the limit of infinitely heavy impurities
embedded in a one-dimensional quantum liquid. They con-
cluded that (a) repulsively interacting fermions mediate an
interaction whose smooth component [31] scales as 1=r and
(b) repulsively interacting bosons (or attractively interacting
fermions) do not mediate a smooth long-range interaction.
In the case of mobile impurities we find that the induced
interaction is different from (a) and (b) and is instead given
by Eq. (1). Moreover, even static impurities in repulsively
interacting bosonic liquids are subject to induced interactions
of the form given by Eq. (1), in contradiction with (b).
Conclusions (a) and (b) were reached by appealing to the

scaling theory of the effective impurity strength [32]. The
latter shows a nontrivial energy dependence in the presence
of a quantum liquid due to its nonlinear (i.e., interacting)
nature. The physics behind this is that, in addition to direct
scattering off the impurity, excitations of the liquid may
also scatter indirectly off the local density distortion
induced by the impurity. This mechanism gives rise to a
renormalization of the low-energy effective impurity
strength: for a system of repulsively interacting fermions
the impurity is renormalized into a perfectly reflecting
barrier [32], while for bosons the impurity instead becomes
perfectly transparent [hence (b)].
However the Casimir effect comes not from the ultimate

low-energy impurity strength, but rather relies on the
participation of an energy band of quantum fluctuations,
whose width is set by ℏc=r. As a result, there is a long-
range Casimir force even in the case where the impurity
strength renormalizes toward zero. Moreover such a flow
toward zero impurity strength is a universal feature of
mobile impurities in any environment, both bosonic and
fermionic. This is because at energy scales below the recoil
energy ER ∼ k2F=M the impurity essentially decouples from
(superflows in) the host liquid [33]. This renders broad
universality of our result—Eq. (1) (the only exception
being infinite mass objects in repulsive fermionic environ-
ment, interacting with 1=r potential, [28,29]).
We now develop the effective model leading to Eq. (1).

In the absence of excitations, a system of impurities in a
quantum liquid can be described by the Lagrangian
Limp ¼

P
j½Pj

_Xj − EjðPj; nÞ�, where Xj, Pj are impurity
coordinates and momenta, respectively, and Ej are the exact
single-impurity dispersion relations, which incorporate
renormalization due to the liquid [34].
The relevant low-energy excitations of the quantum

liquid are phonons [35] described by the density deviation

ρ from the background value n and canonically conjugate
superfluid phase φ, related to the superfluid velocity as
u ¼ ∂xφ=m (ℏ ¼ 1). Their dynamics are encoded in the
phonon Lagrangian [36,37],

Lph ¼ −
Z
x

�
ρ∂tφþ nþ ρ

2m
ð∂xφÞ2 þ

mc2

2n
ρ2 þ α

3!
ρ3
�
: (2)

The quadratic (Luttinger liquid) part of the Lagrangian
describes a linearly dispersing hydrodynamic mode,
ωðqÞ ¼ cjqj. The cubic nonlinear terms ρð∂xϕÞ2 and ρ3

are retained, as they turn out to be essential in deriving the
correct impurity-phonon scattering amplitude Γ [24–26].
The impurity-phonon coupling can then be derived by

employing a “weak-coupling” expansion in phonon ampli-
tude [33]. This description is valid at low energies where the
impurity becomes essentially transparent. The expansion
may be achieved by noting [24–26,38] that an impurity in
the presence of a long wavelength phonon sees an essen-
tially global modification of the density nþ ρðXÞ and
supercurrent uðXÞ. One thus concludes that in the frame
moving with velocity uðXÞ, the impurity energy is EðP−
MuðXÞ; nþ ρðXÞÞ. A Galilean transformation then gives
laboratory interaction energy: ElabðP; u; nþ ρÞ ¼ EðP−
Mu; nþ ρÞ þ Pu − 1

2
Mu2, where the phonon fields are

taken at the location of the impurity. The left-hand side
describes the additional energy cost associated with exciting
the liquid in the presence of the impurity, thus expressing
the impurity-phonon coupling through the exact impurity
dispersion relation.
To describe scattering between impurities and phonons,

one may proceed along the lines of Refs. [24–26] (see the
Supplemental Material [39] for details of this procedure):
(i) perform a canonical transformation to variables ~ρ, ~u,
which removes all coupling terms linear in phonon ampli-
tude, (ii) expand the interaction energy Elabð~ρ; ~uÞ to second
order in ~ρ, ~u, and (iii) perform a rotation to the chiral basis
defined by χ� ¼ ~ϑ=

ffiffiffiffiffiffiffi
πK

p � ~φ
ffiffiffiffiffiffiffiffiffi
K=π

p
, where we introduced

the displacement field ~ϑ through ~ρ ¼ ∂x
~ϑ=π, and K is the

Luttinger parameter [35]. For repulsively interacting fer-
mions (bosons) K < 1 (K > 1).
The first result of this sequence of operations is a

spatially local contribution to the interimpurity potential
mediated by single-phonon exchange [45]. It is generated
directly from the canonical transformation (i) and given
by UlocðXi − XjÞ ¼ −cγijδðXi − XjÞ. Although the local
interaction is not the main focus of this work, the explicit
expression for γij is given in terms of partial derivatives of
the dispersion in the Supplemental Material [39].
More importantly, this procedure produces the fully

renormalized scattering interaction between impurities
and phonons, which ultimately leads to the indirect
Casimir interaction between impurities. In the chiral
phonon basis we find
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Lph ¼
1

2

X
β¼�

Z
x
½χβðc∂2

x þ β∂2
x;tÞχβ�; (3)

Lint ¼
X
j

Γj

m
∂xχþðXj; tÞ∂xχ−ðXj; tÞ; (4)

where Γj is the exact scattering amplitude corresponding to
the jth impurity. It represents the impurity-induced scatter-
ing matrix element between right and left moving chiral
phonons [47], and is discussed in more detail below.
One may now evaluate the induced interimpurity inter-

action by averaging the interaction, Eq. (4), over the
quadratic chiral action Eq. (3) (see Fig. 1 for a diagram-
matic representation). This procedure gives the leading
large distance, r ≫ ξ, [48] component of the interimpurity
interaction, not restricted to the regime of weak impurity
coupling. It also incorporates the leading small temper-
ature, T ≪ mc2, dissipative effects which are encoded in
the semiclassical equations of motion,

_Pi ¼ −
X
j

∂Xi
U

�
_Xi þ _Xj

2
; Xi − Xj

�
; (5)

UðV; XÞ ¼ 1

2
ΓiΓj

Z
dq
2π

Πðq; qVÞeiqX: (6)

HereΠðq;ωÞ is the polarization operator of the phonon gas,
related to the Fourier transform of the retarded response

function θðtÞh½ρ2ðx; tÞ; ρ2ð0; 0Þ�i; see the Supplemental
Material [39]. The causality structure of Πðq;ωÞ allows
one to express UðV; XÞ in terms of even and odd compo-
nents: U ¼ Uþ þU−. Here U�ðV;−XÞ ¼ �U�ðV; XÞ
correspondingly depend on the real and imaginary parts
of Πðq;ωÞ, which in turn are connected via the Kramers-
Kronigs relation.
This decomposition is useful because it shows that the

Casimir interaction explicitly stems from scattering of
virtual excitations and is thus expressed through the real
part of Π: UCas ¼ Uþ. Evaluation of Uþ gives Eq. (1) at
zero temperature. Below we discuss only the essential
limiting behavior of U�, delegating a section of the
Supplemental Material [39] to the exact expressions.
The first effect of finite temperature is that the coherent

nature of virtual phonon scattering is suppressed at sepa-
rations beyond the temperature length LT ¼ c=2πT. This
results in the exponential suppression of the Casimir
interaction at large distances r > LT ,

UCasðrÞ ¼ −mc2
Γ1Γ2

8π

ξ3

L3
T
e−2r=LT : (7)

The power-law scaling of Eq. (1), valid for ξ < r < LT, is
thus only meaningful deep in the quantum regime, LT ≫ ξ
or T ≪ mc2.
The second effect is that real excitations of the phonon

background in general lead to impurity momentum relax-
ation, which manifests itself as damping in Eq. (5). This is
due to two-phonon Raman scattering and was studied
extensively in Refs. [24–27,33,38,49]. It may be seen in
the simplest case of two slow, _Xj ≪ c, symmetric impu-
rities (Γ1 ¼ Γ2 ¼ Γ), where the equations of motion can be
written in compact form using center of mass coordinates,

_p ¼ −
κ

2
_r −

∂UCasðrÞ
∂r ; _P ¼ −2κ _R½1þ fðr=LTÞ�: (8)

Here r ¼ X1 − X2, R ¼ 1
2
ðX1 þ X2Þ, p ¼ 1

2
ðP1 − P2Þ,

P ¼ P1 þ P2, _Xi ¼ ∂Pi
EðPiÞ, and fðyÞ is a dimensionless

function (related to U− [39]) with asymptotic behavior
fðyÞ ¼ 1 for y ≪ 1 and fðyÞ ¼ −15ye−2y for y ≫ 1 [25].
The damping coefficient κ is given by Eq. (9) and is
discussed below.
Equation (8) shows that in addition to standard terms of

the form _Pi ¼ −κ _Xi, there is also a correlation correction to
the center of mass damping which emerges from coherent
two-phonon exchange processes. A similar effect was
derived in Ref. [25] in the context of dark soliton dynamics
and leads to an effective center of mass damping which
depends on the relative separation: for r≲ LT the damping
is essentially twice as strong, whereas for r≳ LT (f < 0) it
becomes slightly suppressed. Here we demonstrate that this
a generic phenomena, not restricted to solitons in weakly
interacting condensates.

FIG. 1 (color online). Casimir interaction between mobile
impurities in a quantum liquid. (a) Schematic depiction of
two impurities experiencing an induced Casimir attraction
mediated by phonon fluctuations of a one-dimensional quantum
liquid. (b) Single-phonon exchange (wavy line) leading to a
spatially local inter-impurity interaction (impurities i, j are
denoted by straight lines with coordinates Xi;j). (c) Two-phonon
exchange responsible for the long-range Casimir interaction
between impurities (see Eqs. (3) and (4) for the corresponding
Lagrangian).
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The damping coefficient in Eq. (8) is given by

κ ¼ ðmcÞ2 2π
3Γ2

15

�
T

mc2

�
4

: (9)

The T4 scaling of κ (equivalent to the inverse linear
response mobility) first appeared in the context of single
impurity dynamics in Ref. [33]. More recently it was
discussed by Refs. [24–27] where it was shown that for
several cases the exact prefactor is sensitive to deviations
from integrability of the underlying model.
It is worth emphasizing that the exact coefficient entering

Eq. (9) involves the same parameter Γ as in Eqs. (1) and (7).
This is because both the Casimir interaction and the
damping coefficient are controlled by the same underlying
scattering mechanism: the virtual excitations are respon-
sible for UCas while the real processes lead to collective
damping of the center of mass. Remarkably, the two effects
are related by the causality structure inherent in Eq. (6).
The other main achievement of the theory is that it allows

one to express the exact scattering amplitude Γ in terms of
partial derivatives of the exact single-impurity dispersion
relation [24–27] [this follows from step (ii) above]. The
general expression for Γ is not essential to the present
discussion and can be found in previous works [24–27] as
well as in the Supplemental Material [39]. What is crucial is
the observation that for several physically relevant models
Γ changes sign across integrable points in parameter space.
To demonstrate this we briefly discuss the weakly

interacting Bose gas with impurities having nearly the same
mass and coupling constantsG as the background gas g [50],
relevant to spinor Bose condensates. In that case the system
is near the integrable SUð2Þ symmetric point (M ¼ m,
G ¼ g) known as the Yang-Gaudin model [51,52]. In this
case it has been shown that Γ ¼ G=cðmG=Mg − 1Þ (see the
Supplemental Material [39] or Refs. [24,27]). One thus sees
that if two separated impurities can be independently tuned
to lie on opposite sides of integrability (say with M ¼ m,
G1 > g, and G2 < g), one can achieve a repulsive Casimir
interaction, instead of an attractive one.
The analysis utilized above also follows through entirely

for static impurities in a one-dimensional interacting
bosonic (or attractively interacting fermionic) systems.
This offers possibly the most straightforward way to verify
the 1=r3 law (although in this case, to authors’ knowledge,
one does not have a possibility of tuning through integra-
bility, as in the case of mobile impurities). To this end one
would pin two impurities with the help of a state-dependent
optical lattice [17] or a species selective dipole potential
[21], and perform rf spectroscopy on individual impurity
atoms [28,53]. As a function of their separation, one can
then measure the corresponding line shifts of suitable
internal hyperfine energy levels.
To estimate the magnitude of the Casimir effect we focus

on the strongly interacting Tonks limit where the energy
scale mc2 is largest. For the experiment of Ref. [21] one

finds a density of 87Rb atoms n ≈ 7ðμmÞ−1 with a typical
interaction strength of mg=ℏ2n ≈ 1. With temperatures as
low as T ¼ 300 nK and a speed of sound c ≈ 1 cm=s, this
leads to mc2=ℏ ≈ 138 kHz and kBT=mc2 ≈ 0.29. Thus the
magnitude of the potential at the closest applicable separa-
tion r ¼ ξ ≈ 1=n ≈ 0.14 μm isUCasðξÞ ≈ −1 kHz, while for
r ¼ 5LT ≈ 0.39 μmone findsUCasð5LTÞ ≈ −1 Hz, indicat-
ing 3 orders of magnitude variation over a ∼0.25 μm range
of separations. The magnitude of the effect ∼1 kHz is thus
within an experimentally accessible range, with the scale of
applicable separations increasing as one goes deeper into the
quantum degenerate regime, T ≪ mc2.
In conclusion, we have shown that mobile impurities

immersed in a one-dimensional quantum liquid are subject
to a long-range Casimir interaction, universally given by
Eq. (1). This happens in spite of the fact that they become
transparent at low energies. For several integrable impurity
models, the amplitude of impurity-phonon scattering van-
ishes, leading to the absence of Casimir interactions in
those systems. Finally, the strength of the effect is estimated
to be within the resolution of current cold atom experi-
ments, opening the possibility of observing the Casimir
effect in a highly tunable, nonlinear environment.
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