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We derive the rotation-vibration spectrum of a 4α configuration with tetrahedral symmetry
T d and show evidence for the occurrence of this symmetry in the low-lying spectrum of 16O.
All vibrational states with A, E, and F symmetry appear to have been observed as well as the
rotational bands with LP ¼ 0þ, 3−, 4þ, 6þ on the A states and part of the rotational bands built
on the E, F states. We derive analytic expressions for the form factors and BðELÞ values of the
ground-state rotational band and show that the measured values support the tetrahedral symmetry of
this band.
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The cluster structure of light nuclei is a long-standing
problem that goes back to the early days of nuclear
physics [1]. Recent experimental developments have
shown that the low-lying states of 12C can be described
as the rotation-vibration of a 3α cluster with D3h
symmetry (equilateral triangle) [2–5]. Departures
from a rigid cluster structure appear to be moderate
in size and can be accounted for by perturbation
theory. In this Letter, we show that the low-lying states
of 16O can be described as the rotation-vibration
of a 4α cluster with T d symmetry (tetrahedral). The
suggestion that 16O has a tetrahedral 4α structure goes
back many years [6–10]. However, clear signatures
could not be identified. We take advantage of the
algebraic cluster model (ACM) [11,12] to produce
the rotation-vibration spectrum of an object with
T d symmetry and compare it with the observed
spectrum. We also derive an analytic expression for
the BðELÞ values along the ground-state rotational
band. A comparison with the experimental values of
the energy spectrum and electromagnetic transitions
provides strong evidence for tetrahedral symmetry
in 16O.
The algebraic cluster model is a description of cluster

states as representations of a Uðνþ 1Þ group where ν is
the number of space degrees of freedom [11,12]. In
Refs. [11,12], we described three-body clusters, where
the number of degrees of freedom (after removal of the
center of mass) is ν ¼ 3n − 3 ¼ 6, in terms of the algebra
of Uð7Þ. The space degrees of freedom there are the Jacobi

coordinates ~ρ¼ð~r1−~r2Þ=
ffiffiffi
2

p
and ~λ¼ð~r1þ~r2−2~r3Þ=

ffiffiffi
6

p
,

where ~ri are the coordinates of the three α particles (i ¼ 1,

2, 3). We describe four-body clusters with ν ¼ 3n − 3 ¼ 9
in terms of the algebra of Uð10Þ. The space degrees of
freedom here are three Jacobi vectors, ~ρ ¼ ð~r1 − ~r2Þ=

ffiffiffi
2

p
,

~λ¼ð~r1þ~r2−2~r3Þ=
ffiffiffi
6

p
, and ~η¼ð~r1þ~r2þ~r3−3~r4Þ=

ffiffiffiffiffi
12

p
,

where ~ri are the coordinates of the four α particles
(i ¼ 1;…; 4). The algebra of Uð10Þ is constructed by
introducing three vector bosons bρ, bλ, and bη together
with an auxiliary scalar boson s. The bilinear products
of creation and annihilation operators generate the
algebra Uð10Þ

b†ρ;m; b
†
λ;m; b

†
η;m; s† ≡ c†α ðm ¼ 0;�1Þ;
G∶Gαβ ¼ c†αcβ ðα; β ¼ 1;…; 10Þ:

The creation and annihilation operators for vector bosons
(b†ρ;m, b

†
λ;m, b

†
η;m and bρ;m, bλ;m, bη;m) represent the second

quantized form of the Jacobi coordinates and their canoni-
cally conjugate momenta, whereas the auxiliary scalar
boson is introduced in order to construct the spectrum
generating algebra. The energy levels can be obtained by
diagonalizing the Hamiltonian H. In this Letter, we con-
sider clusters composed of four identical particles (4α), for
whichH must be invariant under the permutation group S4.
The most general one- and two-body Hamiltonian that
describes the relative motion of four identical particles, is a
scalar under S4, is rotationally invariant, and conserves
parity as well as the total number of bosons is given
by [13,14]
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H ¼ ϵ0s† ~s − ϵ1ðb†ρ · ~bρ þ b†λ · ~bλ þ b†η · ~bηÞ þ u0s†s† ~s ~s−u1s†ðb†ρ · ~bρ þ b†λ · ~bλ þ b†η · ~bηÞ~s
þ v0½ðb†ρ · b†ρ þ b†λ · b

†
λ þ b†η · b

†
ηÞ~s ~sþH:c:� þ

X
L¼0;2

aL½½2b†ρb†η þ 2
ffiffiffi
2

p
b†ρb

†
λ �ðLÞ · ½H:c:�ðLÞ

þ ½2b†λb†η þ
ffiffiffi
2

p
ðb†ρb†ρ − b†λb

†
λÞ�ðLÞ · ½H:c:�ðLÞ þ ½b†ρb†ρ þ b†λb

†
λ − 2b†ηb

†
η�ðLÞ · ½H:c:�ðLÞ�

þ
X
L¼0;2

cL½½−2
ffiffiffi
2

p
b†ρb

†
η þ 2b†ρb

†
λ �ðLÞ · ½H:c:�ðLÞ þ ½−2 ffiffiffi

2
p

b†λb
†
η þ ðb†ρb†ρ − b†λb

†
λÞ�ðLÞ · ½H:c:�ðLÞ�

þ c1½ðb†ρb†λÞð1Þ · ð ~bλ ~bρÞð1Þ þ ðb†λb†ηÞð1Þ · ð ~bη ~bλÞð1Þþðb†ηb†ρÞð1Þ · ð ~bρ ~bηÞð1Þ�
þ

X
L¼0;2

dLðb†ρb†ρ þ b†λb
†
λ þ b†ηb

†
ηÞðLÞ · ðH:c:ÞðLÞ; (1)

with ~bkm ¼ ð−1Þ1−mbk−m (k ¼ ρ, λ, η) and ~s ¼ s. The
coefficients ϵ0, ϵ1, u0, u1, v0, a0, a2, c0, c2, c1, d0, and d2
parametrize the interactions. The Hamiltonian H is dia-
gonalized within the space of the totally symmetric
representation ½N� of Uð10Þ.
Associated with the Hamiltonian H are transition oper-

ators T. Electromagnetic transition rates and form factors
can all be calculated by considering the matrix elements of
the operator

T ¼ e−iqβDη;z=XD; Dη;m ¼ ðb†η × ~s − s† × ~bηÞð1Þm ; (2)

which is the algebraic image of the operator expðiqr4;zÞ
obtained from the full operator

P
4
i¼1 expði~q · ~riÞ by choos-

ing the momentum transfer ~q in the z direction taken

perpendicular to the base triangle in the direction of the
fourth α particle and considering all particles to be identical
(the coefficient XD is a normalization factor).
The Hamiltonian of Eq. (1) with an appropriate choice of

parameters can describe any dynamics of four-particle
systems. In two cases, corresponding to the dynamic
symmetries Uð10Þ ⊃ Uð9Þ (harmonic oscillator) and
Uð10Þ ⊃ SOð10Þ (deformed oscillator), the eigenvalues
of the Hamiltonian H of Eq. (1) can be obtained analyti-
cally. Here, we discuss another situation, namely, that of
four particles at the vertices of a tetrahedron with T d
symmetry. The spectrum of a tetrahedral configuration can
be obtained from the Hamiltonian of Eq. (1) by setting
some coefficients equal to zero and taking specific linear
combinations of others [13,14]

H ¼ ξ1ðR2s†s† − b†ρ · b
†
ρ − b†λ · b

†
λ − b†η · b

†
ηÞðH:c:Þ þ ξ2½ð−2

ffiffiffi
2

p
b†ρ · b

†
η þ 2b†ρ · b

†
λÞðH:c:Þ

þ ð−2 ffiffiffi
2

p
b†λ · b

†
η þ ðb†ρ · b†ρ − b†λ · b

†
λÞÞðH:c:Þ� þ ξ3½ð2b†ρ · b†η þ 2

ffiffiffi
2

p
b†ρ · b

†
λÞðH:c:Þ

þ ð2b†λ · b†η þ
ffiffiffi
2

p
ðb†ρ · b†ρ − b†λ · b

†
λÞÞðH:c:Þ þ ðb†ρ · b†ρ þ b†λ · b

†
λ − 2b†η · b

†
ηÞðH:c:Þ� þ κ1 ~L · ~Lþ κ2ð~L · ~L − ~I · ~IÞ2: (3)

Here, ~L denotes the angular momentum in coordinate space
(x, y, z) and ~I the angular momentum in the so-called
“index” space ρ, λ, η.
The eigenvalues of H of Eq. (3), given in terms of five

parameters ξ1, ξ2, ξ3, κ1, κ2 and the rigidity parameter R2,
cannot be obtained analytically. However, an approximate
energy formula can be obtained by semiclassical methods
[N → ∞ in Uð10Þ]. A tetrahedral configuration has three
vibrational modes v1, v2, and v3 labeled by their T d
symmetry. The vibration v1 is the symmetric stretching
(breathing mode) with A symmetry. The vibration v2 ¼
v2a þ v2b is the doubly degenerate vibration with E
symmetry and a, b components. The vibration v3 ¼ v3a þ
v3b þ v3c is the triply degenerate vibration with F sym-
metry and a, b, c components. Since the tetrahedral group
T d is isomorphic to the permutation group S4, the vibra-
tions can also be labeled by representations of S4: ½4� ∼ A,
½22� ∼ E, ½31� ∼ F. The vibrational spectrum is

Evib ¼ ω1

�
v1 þ

1

2

�
þ ω2ðv2 þ 1Þ þ ω3

�
v3 þ

3

2

�
; (4)

with frequencies

ω1¼ 4NR2ξ1; ω2¼
8NR2

1þR2
ξ2; ω3¼

8NR2

1þR2
ξ3: (5)

For rigid configurations, R2 ¼ 1 and ωi ¼ 4Nξi (with
i ¼ 1, 2, 3). The rotational states built on top of each
vibration have angular momenta and parities determined by
the invariance of the Hamiltonian under S4; i.e., all states
must be symmetric under S4. As a consequence, states with
A symmetry have angular momentum and parity LP ¼ 0þ,
3−, 4þ, 6�, …, while states with E symmetry have
LP ¼ 2�, 4�, 5�, 6�, …, and states with F symmetry
have LP ¼ 1−, 2þ, 3�, 4�, 5−�, 6þ�, …. Note the unusual
composition of the rotational band built on the ground state
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(A symmetry). This angular momentum content is in
agreement with that observed in molecules with T d
symmetry (see p. 450 of Ref. [15]). This content has also
been derived in Ref. [7] for applications to nuclei. The
rotational spectrum depends on L and I and on the
parameters κ1 and κ2 in Eq. (3). However, for the excita-
tions of a rigid spherical top, L ¼ I, the last term in Eq. (3)
does not contribute, and the rotational energies are given
by Erot ¼ κ1LðLþ 1Þ. The combined rotation-vibration
spectrum of a tetrahedral cluster is shown in Fig. 1.
The matrix elements of the electromagnetic transition

operator T and form factors in the ACM are the repre-
sentation (Wigner) matrix elements of Uð10Þ. We have
derived closed forms of these in the Uð9Þ and SOð10Þ
dynamic symmetries and in the large N limit for the
spherical top with tetrahedral symmetry. This constitutes
an important new result of the ACM. In the spherical top
case discussed here, the form factors for transitions along
the ground-state band ð0; 0; 0ÞA are given by spherical
Bessel functions, FLð0þ → LP; qÞ ¼ cLjLðqβÞ. The coef-
ficients cL for the first few states are c20 ¼ 1, c23 ¼ 35=9,
c24 ¼ 7=3, and c26 ¼ 416=81 for LP ¼ 0þ, 3−, 4þ, and 6þ,
respectively. The transition probabilities BðELÞ can be
extracted from the form factors in the long wavelength limit

BðEL; 0 → LÞ ¼
�
ZeβL

4

�
2 2Lþ 1

4π

�
4þ 12PL

�
− 1

3

��
:

(6)

The form factors and BðELÞ values only depend on the
parameter β, the distance of each α particle from the center
of the tetrahedral configuration, and on the T d symmetry
that gives the coefficients cL. By extracting the value of β
from the elastic form factor measured in electron scattering,
one can, thus, make a model independent test of the
symmetry.
Whereas L is an exact symmetry of H, I is not. If L ≠ I,

perturbations must be added. The algebraic model allows

one to study these perturbations quantitatively by diagonal-
izing the Hamiltonian H of Eq. (3) in an appropriate basis.
A convenient basis to construct states with good permu-
tation symmetry S4 is the nine-dimensional harmonic
oscillator basis [16] corresponding to the reduction
Uð10Þ ⊃ Uð9Þ ⊃ Uð3Þ ⊗ Uð3Þ ⊗ Uð3Þ. We have con-
structed a set of computer programs to calculate energies
and electromagnetic transition rates in this basis.
Our derivation of the spectrum of clusters with T d

symmetry can be used to study cluster states in 16O. The
observed experimental spectrum of 16O is shown in Fig. 2.
It appears that a rotational ground-state band with angular
momenta LP ¼ 0þ, 3−, 4þ, 6þ has been observed with
moment of inertia such that κ1 ¼ 0.511 MeV. It appears
also that all three vibrations A, E, and F, have been
observed with comparable energies, ∼6 MeV, as one
would expect from Eq. (4) if ξ1 ¼ ξ2 ¼ ξ3. A rotational
band with 0þ, 3−, 4þ, 6þ also appears to have been
observed for the A vibration (1,0,0) (breathing mode). This
band is similar in nature to the band built on the Hoyle state
in 12C and recently observed [2–4]. It has a moment of
inertia such that E ¼ 0.463LðLþ 1Þ MeV. The moment of
inertia of the A vibration is greater than that of the ground
state due to its nature (breathing vibration). The situation is
summarized in Fig. 3. The observed spectrum has pertur-
bations. The most notable perturbation is the splitting of the
2� states of the E vibration. This cannot be simply
described by the formula E ∝ LðLþ 1Þ and requires a
diagonalization of the full Hamiltonian.
Having identified the cluster states, one can then test the

T d symmetry by means of the electromagnetic form factors
and BðELÞ values. We extracted the value of β from the first
minimum in the elastic form factor [18], obtaining
β ¼ 2.0 fm. Table I shows the results for the BðELÞ
values. The T d symmetry appears to be unbroken in the

FIG. 2. The observed spectrum of 16O [17]. The levels are
organized in columns corresponding to the ground-state band and
the three vibrational bands with A, E, and F symmetry of a
spherical top with tetrahedral symmetry. The last column shows
the lowest noncluster levels.

FIG. 1. Schematic spectrum of a spherical top with tetrahedral
symmetry and ω1 ¼ ω2 ¼ ω3. The rotational bands are labeled
by (v1, v2, v3) (bottom). All states are symmetric under S4.
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ground-state band of 16O. We also investigated the electro-
magnetic decays of the vibrational bands ð1; 0; 0ÞA,
ð0; 1; 0ÞE, and ð1; 0; 0ÞF. For these bands, the T d sym-
metry appears to be broken and, in addition, they decay
mostly by E2 quadrupole transitions. For E2 transitions,
the simple analytic formula of Eq. (6) does not apply, since
the E2 operator is not in the representation A of T d as the
E3, E4, and E6 operators and, hence, can connect different
representations. A full account of these transitions will be
given in a forthcoming longer publication [19].
Cluster states represent only a portion of the full

spectrum of states. They are obtained by assuming that
the α particles have no internal excitation. At energies of
the order of the shell gap, ∼16 MeV in 16O, one expects to
have noncluster states and, thus, the spectrum to be
composed of cluster states immersed into a bath of non-
cluster states. Assigning states to cluster or noncluster
above this energy is a difficult task. We note, however, that
the tetrahedral structure in Fig. 1 has no 0− state and only
one 1− state in the F vibration. Thus, 0− states are clearly
noncluster states. Also, with α particles, one cannot form
T ¼ 1 states. These states are obviously noncluster. In
Fig. 2, we have assigned the states LP ¼ 1−, 0−ðT ¼ 0Þ at
E ¼ 9.585 and 10.957 MeV and LP ¼ 0−, 1−ðT ¼ 1Þ at
E ¼ 12.796 and 13.090 MeV, as the shell-model configu-
ration 1p−1

1=22s1=2. The shell-model states 1p−1
1=21d5=2 with

LP ¼ 2−, 3− and T ¼ 0 and T ¼ 1 can also be easily
identified, but they are not shown in Fig. 2 to not overcrowd
the figure. For the same reason, we do not show in Fig. 2
other states with LP ¼ 4�, 5−, 6�,…, which can be
assigned to cluster configurations.
An important question is the shell-model description of

cluster states. It was suggested long ago [20,21] that the
state at 6.049 MeV is 4p − 4h, while the state at
7.116 MeV is 5p − 5h. In view of the recent developments
of large-scale shell-model calculations and of the no-core
shell model it would be interesting to study once more the
shell-model description of the states in Fig. 2.
Very recently, also, an ab initio lattice calculation of the

spectrum and structure of 16O was reported [22]. This
calculation confirms the tetrahedral structure of the ground
state of 16O in agreement with our findings. For the excited
states, 0þ2 and 2þ1 instead, a square configuration is
suggested. This would imply a large breaking of the T d
symmetry for the vibrations in Fig. 2. Although we expect
the T d symmetry to be broken for the vibrational states due
to the near degeneracy of them ξ1 ¼ ξ2 ¼ ξ3, i.e., even a
small breaking term in H may cause a large mixing, we
nonetheless feel at this stage that our interpretation of the
excited states of 16O as vibrations provides a good starting
point for further studies. Algebraic methods are quite
general, and as shown in Ref. [23], they can accommodate
all sorts of configurations of four particles, including
configurations with T d, D3h, and D4h (square) symmetry.
In connection with tetrahedral configurations in nuclei, we
mention here also the work of Ref. [24] in light nuclei and
Ref. [25] in heavy nuclei for which, however, there is no
experimental confirmation.
In conclusion, we have introduced an algebraic model

capable of describing the full dynamics of four-body
clusters. Within this model, we have rederived the spectrum
of a spherical top with tetrahedral symmetry and confirmed
the evidence for the occurrence of this symmetry in the low-
lying spectrum of 16O presented long ago by Kameny [7]
and Robson [10]. An analysis of the BðELÞ values along
the ground-state band provides even stronger evidence for
T d symmetry than the energies. Another crucial aspect is
the development of the Uð10Þ ACM for four-body clusters
that allows a detailed description of energies, electromag-
netic transition rates, form factors, and BðELÞ values. We
hope that the results in this Letter will stimulate further

TABLE I. Comparison of theoretical and experimental BðELÞ values in e2 fm2L and Eγ values in keV, along the
ground-state band. The theoretical BðELÞ values are obtained from Eq. (6), and the Eγ values are obtained from
E ¼ 0.511LðLþ 1Þ MeV. The experimental values are taken from Ref. [17].

BðEL;LP → 0þÞ Theoretical Experimental EγðLPÞ Theoretical Experimental

BðE3; 3−1 → 0þ1 Þ 181 205� 10 Eγð3−1 Þ 6132 6130
BðE4; 4þ1 → 0þ1 Þ 338 378� 133 Eγð4þ1 Þ 10220 10356
BðE6; 6þ1 → 0þ1 Þ 8245 Eγð6þ1 Þ 21 462 21 052

FIG. 3. The excitation energies of cluster states in 16O plotted as
a function of LðLþ 1Þ: closed circles for the ground-state band,
closed squares for the A vibration, open circles for the E
vibration, and open triangles for the F vibration.
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experimental work on the structure of 16O. Finally, the
results presented here in conjunction with those in 12C
emphasize the occurrence of α-cluster states in light nuclei.
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