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We present the complete next-to-next-to-next-to-leading order short-distance and bound-state QCD
correction to the leptonic decay rate Γðϒð1SÞ → lþl−Þ of the lowest-lying spin-1 bottomonium state.
The perturbative QCD prediction is compared to the measurement Γðϒð1SÞ → eþe−Þ ¼ 1.340ð18Þ keV.
DOI: 10.1103/PhysRevLett.112.151801 PACS numbers: 13.20.Gd, 12.38.Bx

Bound states of a heavy quark and antiquark provide an
ideal laboratory to study nonrelativistic quantum chromo-
dynamics (NRQCD). The bound-state dynamics is char-
acterized by three scales, the mass of the heavy quark (hard
scale) m, its typical momentum (soft scale) mv, and energy
(ultrasoft scale) mv2. Here, v ∼ αsðmvÞ is the velocity of
the quark in the bound state and αs the strong coupling. The
theoretical description of heavy-quark bound states uses
the fact that the different scales are well separated since the
velocity is small. This allows us to construct a series of
effective theories by integrating out the larger scales.
Starting from QCD, the first step is to integrate out the
hard modes to obtain NRQCD [1–3]. The second step is to
integrate out potential and soft gluons and soft light quarks,
leading to potential NRQCD (PNRQCD) [4]. PNRQCD
contains only potential heavy quarks, whose energy and
momentum are of order mv2 and mv, respectively, and
ultrasoft gluons and light quarks.
A “classical” application of NRQCD is the prediction of

the decay rate of heavy-quark bound states into leptons.
The simplest such system is the ϒð1SÞ meson, the lowest-
lying spin-triplet bound state of a bottom quark and
antiquark. To next-to-next-to-next-to-leading order accu-
racy (N3LO) the decay rate can be computed with the help
of the formula [5]

Γðϒð1SÞ → lþl−Þ

¼ 4πα2

9m2
b

jψ1ð0Þj2cv
�
cv −
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mb

�
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dv
3

�
þ…

�
; (1)

with α being the fine structure constant and mb the bottom-
quark pole mass. cv and dv are matching constants of
leading and subleading bb̄ currents in NRQCD, and ψ1ð0Þ
is the wave function of the (bb̄) system at the origin, which
at leading order is given by

jψLO
1 ð0Þj2 ¼ 8m3

bα
3
s

27π
: (2)

The mass of the ϒð1SÞ is Mϒð1SÞ ¼ 2mb þ E1, and the
perturbative part of the binding energy E1 is given at
leading order by Ep;LO

1 ¼ −ð4mbα
2
sÞ=9.

In the following, we assume that the bound-state
dynamics of the ϒð1SÞ state is governed by weak coupling,
which formally requires that the ultrasoft scale mbv2 is
large compared to the strong interaction scale Λ. It is
generally believed that this is a reasonable assumption for
the lowest-lying 1S state, but not for the higher states,
which, though more nonrelativistic, are too large to be
considered as bound states dominated by the color-
Coulomb interaction. Even for the 1S state the assumption
mbv2 ≫ Λ is questionable. In fact, the leptonic decay that
we consider in this Letter should be considered as one of
the crucial tests of perturbative QCD bound-state dynamics,
when all three scales (hard, soft, ultrasoft) are relevant
to the problem. The more recent analyses of the leptonic
ϒð1SÞ decay are based on next-to-leading order QCD
together with nonperturbative condensate corrections [6],
or second-order QCD without nonperturbative corrections
[7], and both fail to describe the measured decay width
accurately. The problem arises from large uncertainties in
the perturbative and nonperturbative corrections.We address
both issues in this Letter.
Recently, the last missing ingredients for a complete

N3LO evaluation of Γðϒð1SÞ → lþl−Þ have been com-
puted, which allow us to reconsider the problem with
unprecedented accuracy: The gluonic three-loop contribu-
tions to cv have been evaluated in Ref. [8], and third-order
corrections to the wave function at the origin induced by
single- and double-potential insertions and ultrasoft gluon
exchange are computed in Refs. [5,9–11]. Furthermore, the
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still missing two-loop OðϵÞ term of the d ¼ 4 − 2ϵ dimen-
sional matching coefficient of the 1=ðmbr2Þ PNRQCD
potential is given in the Appendix.
Thus, we are now in the position to compute the decay

rate of the ϒð1SÞ meson into a lepton pair to third order

in perturbation theory. The following results apply to the
cases l ¼ e, μ, where the lepton mass can be neglected.
Expanding out all factors of Eq. (1) in αs ≡ αsðμÞ, where μ
denotes the renormalization scale in the MS scheme,
we obtain

Γðϒð1SÞ → lþl−Þjpole ¼
25α2α3smb

35
½1þ αsð−2.003þ 3.979LÞ þ α2sð9.05 − 7.44 ln αs − 13.95Lþ 10.55L2Þ

þ α3sð−0.91þ 4.78a3 þ 22.07b2ϵ þ 30.22cf − 134.8ð1Þcg − 14.33 ln αs − 17.36 ln2αs

þ ð62.08 − 49.32 ln αsÞL − 55.08L2þ23.33L3Þ þOðα4sÞ� (3)

¼ 25α2α3smb

35
½1þ 1.166αs þ 15.2α2s þ ð66.5þ 4.8a3þ22.1b2ϵ þ 30.2cf − 134.8ð1ÞcgÞα3s þOðα4sÞ�

¼ 25α2α3smb

35
½1þ 0.28þ 0.88 − 0.16�

¼ ½1.04� 0.04ðαsÞþ0.02
−0.15ðμÞ� keV; (4)

where L ¼ ln½μ=ðmbCFαsÞ�with CF ¼ 4=3. The subscripts
indicate the contribution from the (scale independent)
coefficients of the three-loop static potential (a3), the
OðϵÞ term of the 1=ðmbr2Þ potential (b2ϵ), and the
fermionic and bosonic contribution of the three-loop
matching coefficient (cf and cg). The uncertainty due to
the limited precision of the latter is given in parentheses.
The contribution from the OðϵÞ terms of the 1=ðm2

br
3Þ

potentials is not made explicit.
For the numerical evaluation after Eq. (3) we use

αð2mbÞ ¼ 1=132.3 [12], αsðMZÞ ¼ 0.1184ð10Þ and the
renormalization scale μ ¼ 3.5 GeV. We use the program
RUNDEC [13] to evolve the coupling in the four-loop
approximation such that αsð3.5 GeVÞ ¼ 0.2411 and to
compute the pole mass mb ¼ 4.911 GeV in the three-
loop approximation from the MS value m̄bðm̄bÞ¼
4.163ð16ÞGeV given in Ref. [14]. The scale uncertainty
in Eq. (4) is computed from the maximum and minimum
value of the width within the range μ ∈ ½3; 10� GeV (see
discussion below). Note that the uncertainty induced by
the bottom-quark mass is below 1 per mille and can thus
be neglected. However, this does not take into account
the uncertainty due to the perturbative instability of the
pole mass.
We can avoid the computation of the pole mass by

going to the potential-subtracted (PS) mass scheme
[15]. In computing the PS mass from the MS mass
m̄bðm̄bÞ ¼ 4.163 GeV, we combine (for n ¼ 1, 2, 3) the
n-loop correction to the MS-pole-mass relation with
the (n − 1)-loop correction to the Coulomb potential in
the pole-PS-mass relation and find mPS

b ≡mPS
b ðμf ¼

2 GeVÞ ¼ 4.484 GeV. We then eliminate mb in Eq. (3)
by replacingmb ¼ mPS

b þ δm and expand systematically in
αs to obtain

Γðϒð1SÞ→ lþl−ÞjPS
¼ Γðϒð1SÞ→ lþl−Þjpole;mb→mPS

b

þ 25α2α3smPS
b

35
xf½0.42α2s þ α3sð−1.78þ 0.28Lf þ 1.69LÞ

þOðα4sÞ� (5)

¼ 25α2α3smPS
b

35
½1þ 1.528αs þ 16.3α2s þ ð74.7þ 4.8a3

þ22.1b2ϵ þ 30.2cf − 134.8ð1ÞcgÞα3s þOðα4sÞ�

¼ 25α2α3smPS
b

35
½1þ 0.37þ 0.95 − 0.04�

¼ ½1.08� 0.05ðαsÞþ0.01−0.20ðμÞ� keV; (6)

with xf ¼ μf=ðmPS
b αsÞ and Lf ¼ lnðμ2=μ2fÞ. The pattern of

the series is essentially the same in both schemes. The
NNLO corrections are very large [7], but we find only
moderate corrections at N3LO. Together with the improved
scale dependence at third order discussed below, this may
be an indication that perturbative corrections beyond the
third order are small.
In Fig. 1 we show the decay rate Γðϒð1SÞ → lþl−Þ in

the PS scheme as a function of the renormalization scale
including successively higher orders. Very similar results
are obtained for the pole scheme. For small scales
no convergence is observed and for values close to the
soft scale μs ¼ mbαsðμsÞCF ≈ 2.0 GeV there are big
differences between subsequent perturbative orders. It is
interesting to note that for μ≳ 3 GeV the N3LO prediction
becomes quite flat and furthermore only shows a small
deviation from the NNLO curve. We take this as evidence
that perturbative computations of Coulomb bound states
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in QCD are better behaved when the scale is taken
somewhat larger than the naive estimate of the soft scale,
as already observed in Ref. [16]. Thus we vary μ between
3 and 10 GeV to compute the scale uncertainty which
amounts to 14%. This is about twice the size of the next-to-
leading logarithmic contributions beyond Oðα3sÞ computed
in Ref. [17]. Further contributions of next-to-next-to-
leading logarithmic order might be of similar size, but are
not considered here since they are not completely known
(see, for example, Refs. [18,19]).
Compared to the experimental value Γðϒð1SÞ →

eþe−Þjexp ¼ 1.340ð18Þ keV [20], the third-order perturba-
tive result is about 30% too low. The discrepancy remains
substantial even when including the theoretical uncertainty.
Note, however, that the decay rate depends on the value of
αs to a high power. In Fig. 2 we therefore show the decay

rate and its scale dependence as a function of αsðMZÞ at
LO, NLO, NNLO, and N3LO in the PS scheme. The plot
shows good convergence of the perturbative series up to
αsðMZÞ ≈ 0.122, with the N3LO band completely inside
the NNLO one. However, the third-order result is always
below the experimental value up to this point.
Since the perturbative contributions seem to be well

under control at third order, a possible explanation for the
difference between the experimental and the perturbative
value is a sizable nonperturbative contribution. This is not
implausible, since the scale of ultrasoft gluons is close to
the strong-interaction scale for the ϒð1SÞ meson. The
contribution to the wave function at the origin due to the
gluon condensate has been evaluated in Refs. [6,21]. It
takes the form

δnpjψ1ð0Þj2 ¼ jψLO
1 ð0Þj2 × 17.54π2K; (7)

where

K ¼ hαsπ G2i
m4

bðαsCFÞ6
(8)

is the dimensionless number that controls the relative size
of the gluon condensate contribution. Using hðαs=πÞG2i ¼
0.012 GeV4 [22] and αsð3.5 GeVÞ, its contribution to the
decay rate evaluates to δnpΓllðϒð1SÞÞ ¼ 1.67 keV in the
pole mass scheme and 2.20 keV in the PS mass scheme,
far in excess of the missing 0.26 keV. There is a large
uncertainty in these estimates, since the value of the gluon
condensate is very uncertain and the scale of αs in the
denominator is undetermined. For example, if we adopt the
strategy of Ref. [6] and replace αs in the denominator of
Eq. (8) by a coupling ~αs related to the coefficient of the
Coulomb potential at the scale μ ¼ 1 GeV, the above
numbers change to 0.06 (pole scheme) and 0.08 keV
(PS scheme), respectively. Moreover, depending on the
choice for the strong coupling in Eq. (8), one either
concludes from the size of the dimension-6 condensate
contribution, also computed in Ref. [6], that the condensate
expansion is not convergent, or, to the contrary, well
behaved. Hence, no reliable estimate of the leptonic decay
width can be obtained by this procedure.
Additional insight on δnpjψ1ð0Þj2 can be obtained from

the mass of the ϒð1SÞ state, which we can write as

Mϒð1SÞ ¼ 2mb þ Ep
1 þ

624π2

425
mbðαsCFÞ2K; (9)

where Ep
1 is the perturbative contribution to the bound-state

energy, which is also known to the third order in QCD
[16,23,24], and K is the gluon condensate correction from
Refs. [6,21,25]. For the following analysis, it is mandatory
to work with the PS scheme to achieve a reliable perturba-
tive expansion of Ep

1 [cf. Ref. [16], Eq. (38)]. A direct
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FIG. 1 (color online). The decay rate in the PS scheme as a
function of the renormalization scale μ. Dotted (red), dash-dotted
(green), short-dashed (blue), and solid (black) lines correspond
to LO, NLO, NNLO, and N3LO prediction.
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FIG. 2 (color online). The decay rate as a function of αsðMZÞ at
LO (red, bottom), NLO (green, middle), NNLO (blue, top), and
N3LO (black, inner top band). The bands denote the variation of μ
between 3 and 10 GeV. The horizontal bar denotes the exper-
imental value, while the vertical bar denotes the world average of
the strong coupling constant, αsðMZÞ ¼ 0.1184ð10Þ.
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determination of mPS
b from the ϒð1SÞ mass at third order,

but excluding the nonperturbative contribution, gives
mPS

b ¼ 4.57 GeV [16] (the central scale μ ≈ 2 GeV is used
in this reference), which is larger than the value 4.48 GeV
obtained above from the most accurate determinations of
the MS bottom-quark mass. This suggests that there is a
non-negligible nonperturbative contribution δMnp

ϒð1SÞ to the

ϒð1SÞ mass. Repeating the analysis of Ref. [16] with our
parameters, we find

δMnp
ϒð1SÞ ≡Mϒð1SÞ − ð2mPS

b þ Ep;PS
1 Þ

≈ ½125� 16ðαsÞ � 34ðmbÞþ10−25ðμÞ� MeV; (10)

where Ep;PS
1 ¼ 2mb − 2mPS

b þ Ep
1 . This estimate is consid-

erably larger than the value δMnp
ϒð1SÞ ≈ 15 MeV given in

Ref. [6] based on the condensate expansion, and relies only
on the accurate input value for the bottom MS mass and the
convergence of the perturbative expansion of the binding
energy in the PS scheme [16].
Equation (10) neglects the mass of the charm quark. The

effect of a finite mass mc ¼ 1.4 GeV is easily computed
at Oðα2sÞ and reduces δMnp

ϒð1SÞ by 12 MeV for given MS
bottom-quark mass. Including an estimate of the next order
from Ref. [26], we therefore subtract ð20� 10Þ MeV from
Eq. (10). Comparing Eq. (9) to Eq. (7), we find the relation

δnpΓllðϒð1SÞÞ ¼
4α2αs
9

17.54 × 425

3744
δMnp

ϒð1SÞ

≈ ½1.28þ0.17
−0.18ðαsÞ � 0.42ðmbÞþ0.20

−0.57ðμÞ
� 0.12ðmcÞ� keV: (11)

The numerical result is closer to the larger values obtained
in our previous estimates. It must, however, be taken with a
grain of salt, since for such large values the condensate
expansion is not convergent. The different subleading
dimension-6 corrections to δnpΓllðϒð1SÞÞ and δMnp

ϒð1SÞ
then invalidate the simple relation (11) and once again
preclude a reliable estimate of the nonperturbative part
of the leptonic decay width. We should emphasize that
this conclusion depends strongly on the state-of-the-art
value m̄bðm̄bÞ ¼ 4.163ð16Þ GeV of the MS mass [14].
If the mass were only 40MeV larger, we would find
δnpΓllðϒð1SÞÞ ≈ 0.3 keV from Eq. (11) and simultane-
ously conclude that the condensate expansion is well
behaved.
In summary, we have computed the third-order correc-

tion to the decay rate Γðϒð1SÞ → lþl−Þ. This is the first
third-order QCD bound-state calculation, where both short-
and long-distance effects are important. Both in the pole
and potential subtracted scheme the N3LO corrections are
negative and amount for μ ¼ 3.5 GeV to about −16% and
−4%, respectively. The perturbative uncertainty that con-
stituted the main limitation of previous analyses is thus
mostly removed. We find that the leptonic decay width is

mostly perturbative; the perturbative contribution amounts
to roughly 70% of the measured value. The new third-order
contribution is crucial to ascertain this conclusion. We
further considered several estimates of nonperturbative
effects based on the condensate expansion, including a
relation to the mass of the ϒð1SÞ state. Unfortunately, the
situation is ambiguous and no clear conclusion on the size
of nonperturbative effects could be drawn. Whether a full
quantitative, theoretical understanding of the leptonic
decay width can be achieved therefore remains an open
question. We note, however, that this conclusion relies on
the precise value of the bottom MS quark mass.
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Appendix: Two-loop OðϵÞ term of 1=ðmbr2Þ potential—
In this Appendix we present the result for the two-loop
OðϵÞ term of the matching coefficient of the 1=ðmbr2Þ
potential. This is most easily achieved by replacing the
quantity b2 in Eq. (6) of Ref. [27] by b2 þ ϵbϵ2. Then bϵ2
reads

bϵ2 ¼ CFCA

�
−
631

108
−
15π2

16
þ 65 ln 2

9
−
8ln22
3

�

þ C2
A

�
−
1451

216
−
161π2

72
−
101 ln 2

18
−
4ln22
3

�

þ CATFnl

�
115

54
þ 5π2

18
þ 49 ln 2

18

�

þ CFTFnl

�
17

27
−
11π2

36
−
4 ln 2
9

�
: (A1)
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