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We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein’s
equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk
geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the
fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional
turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension
D ¼ dþ 4=3.
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Introduction.—According to holography, turbulent flows
in relativistic boundary conformal field theories should be
dual to dynamical black hole solutions in asymptotically
AdSdþ2 spacetime with d the number of spatial dimensions
the turbulent flow lives in. This immediately raises many
interesting questions about gravitational dynamics. For
example, what distinguishes turbulent black holes from
nonturbulent ones?What is the gravitational origin of energy
cascades and the Kolmogorov scaling observed in turbulent
fluid flows?
Gravitational dynamics can also provide insight into

turbulence itself. For superfluids, where vortices are not
governed by hydrodynamics, holography has demonstrated
there can be a direct cascade to the UV even in two dimen-
sional turbulence [1]. Likewise, having control of regimes
beyond the hydrodynamic description of turbulence of
normal fluids may allow one to study the domain of validity
and the late-time regularity of solutions to the Navier-Stokes
equation.
In this Letter we take a first step towards studying

holographic turbulence by numerically constructing black
hole solutions in asymptotically AdS4 spacetime dual
to d ¼ 2 turbulent flows, where energy flows from the
UV to the IR in an inverse cascade. We propose a simple
geometric measure to distinguish turbulent black holes
from nonturbulent ones: the horizon of a turbulent black
hole exhibits a fractal-like structure with effective fractal
dimension D ¼ dþ 4=3. The 4=3 in this formula can be
understood as the geometric counterpart of the rapid
entropy growth implied by the Kolmogorov scaling.
Numerics and gravitational description.—We generate

turbulent evolution by solving Einstein’s equations

RMN −
1

2
GMNðR − 2ΛÞ ¼ 0; (1)

with cosmological constant Λ ¼ −3. Here and below upper
case latin indices run over all AdS spacetime coordinates,
Greek indices run over boundary spacetime coordinates,

and lower case latin indices run over spatial coordinates.
Our numerical scheme for solving Einstein’s equations is
outlined in [2–4] and will be further elaborated on in a
coming paper [5]. In what follows we focus on some of the
salient details.
We employ a characteristic formulation of Einstein’s

equations and choose the metric ansatz

ds2 ¼ r2gμνðx; rÞdxμdxν þ 2drdt; (2)

with t≡ x0. The coordinate r is the AdS radial coordinate
with r ¼ ∞ corresponding the AdS boundary. The ansatz
(2) is invariant under the residual diffeomorphism
r → rþ ξðxÞ for arbitrary ξðxÞ. Since the geometry we
study contains a black brane, we fix the residual diffeo-
morphism invariance by demanding the apparent horizon
be at r ¼ 1. Horizon excision is then performed by
restricting the computational domain to r ≥ 1.
The AdS boundary is causal and therefore boundary

conditions must be imposed there. Solving Einstein’s equa-
tions with a series expansion about r ¼ ∞, one finds an
asymptotic expansion of the form gμνðx; rÞ ¼ gð0Þμν ðxÞþ
� � � þ gð3Þμν ðxÞ=r3 þ � � �. All omitted terms in the expansion
are determined by gð0Þμν ðxÞ and gð3Þμν ðxÞ. The coefficient
gð0Þμν ðxÞ corresponds to the metric the dual turbulent flow
lives in. Hence, we choose the boundary condition
limr→∞gμνðx; rÞ ¼ ημν. The coefficient g

ð3Þ
μν ðxÞ is determined

by solving Einstein’s equations and encodes the expectation
value of the boundary stress tensor [6]

hTμνðxÞi ¼
3

16πGN

�
gð3Þμν ðxÞ þ 1

3
ημνg

ð3Þ
00 ðxÞ

�
; (3)

where GN is Newton’s constant.
We choose initial data corresponding to a locally boosted

black brane with metric

gμν ¼ ðR=rÞ2½ημν þ ðrh=RÞ3uμuν�; (4)
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where uμðxÞ is the local boost velocity and rhðxÞ ¼
4πTðxÞ=3, with TðxÞ the local temperature of the brane.
The function R satisfies ∂R=∂r ¼ ½1þ ðrh=RÞ3u2�1=2.
We work in a periodic spatial box of size Δx. We choose

the initial boost velocity

uxðx; yÞ ¼ δuxðx; yÞ; uyðx; yÞ ¼ cosQxþ δuyðx; yÞ;
(5)

with Q ¼ 20π=Δx. The small fluctuations δui are present
to break the symmetry of the initial conditions. We choose
δui to be a sum of the first four spatial Fourier modes with
random coefficients and phases and adjust the overall
amplitude of δui such that jδuij < 1=5. These initial
conditions are unstable and capable of producing subsequent
turbulent evolution if the Reynolds number Re is sufficiently
large. For our initial conditions Re ∼ TΔx. We choose box
size Δx ¼ 1500 and the initial temperature 4πT=3 ¼ 1. We
discretize Einstein’s equations using pseudospectral methods
and represent the radial dependence in terms of an expansion
of 20 Chebyshev polynomials and the x − y dependence in
terms of an expansion of 305 plane waves. We then evolve
the discretized geometry for 3001 units of time.
Results and discussion.—In Fig. 1 we plot of the

boundary vorticity ω≡ ϵμναuμ∂νuα at three different times.
To compute the vorticity we first extract the boundary stress
tensor hTμνi from the metric via Eq. (3). We then define
the fluid velocity uμ as the normalized (u2 ¼ −1) future-
directed timelike eigenvector of hTμ

νi,
hTμ

νiuν ¼ −εuμ; (6)

with ε the proper energy density.
During times t ¼ 0 through t ∼ 700 our system experi-

ences an instability which destroys the initial sinusoidal
structure in the initial data (5) and drives the system into
turbulent evolution. As seen in Fig. 1, by time t ¼ 2000 there
are many vortices present with fluid rotating clockwise (red)
and counterclockwise (blue). During the latter evolution seen
at times t ¼ 2496 and 3001 isolated vortices with the same

rotation tend to merge together to produce larger and larger
vortices. The merging of vortices of like rotation to produce
larger vortices is a tell tale signature of an inverse cascade.
It is interesting to compare our results to the Kolmogorov

theory of turbulence. A classic result from Kolmogorov’s
theory is that for driven steady-state turbulence the power
spectrum P of the fluid velocity,

Pðt; kÞ≡ ∂
∂k

Z
jk0j≤k

ddk0

ð2πÞd j ~uðt; k
0Þj2; (7)

with ~uðt; kÞ≡ R
ddxuðt; xÞe−ik·x, obeys the scaling

Pðt; kÞ ∼ k−5=3; (8)

in an inertial range k ∈ ðΛ−;ΛþÞ. Despite the fact that our
system is not driven or in a steady-state configuration we do
see hints of the Kolmogorov scaling. In Fig. 2 we plot P at
time t ¼ 1008. Our numerical results are consistent with
the scaling (8) in the inertial range k ∈ ð0.025; 0.055Þ. As
we are not driving the system, evidence of the k−5=3 scaling
is transient and destroyed first in the UV, with the UV knee
at k ¼ 0.055 shifting to the IR as time progresses. Beyond
the inertial range the spectrum decreases like P ∼ k−p with
p ∼ 5 until k ∼ 0.15.
The inverse cascade also manifests itself in gravitational

quantities. One interesting quantity to consider is the event
horizon area element

ffiffiffi
γ

p ≡ ffiffiffiffiffi
γij

p , where γij in the induced
horizon metric. In our coordinate system and in the limit of
large Reynolds number Re—a requirement for turbulent
evolution—the event and apparent horizons approximately
coincide at r ¼ 1 and γij ≈ gijjr¼1 [7]. Also included in
Fig. 1 are plots of

ffiffiffi
γ

p
. At t ¼ 2000

ffiffiffi
γ

p
exhibits structure

over a large hierarchy of scales and is fractal-like in appe-
arance. We comment more on this further below. However,
as time progresses

ffiffiffi
γ

p
becomes smoother and smoother just

as the fluid vorticity ω does due to the inverse cascade.
The velocity power spectrum P also imprints itself in

bulk quantities. One quantity to consider is the extrinsic
curvature ΘMN of the event horizon. ΘMN can be

FIG. 1 (color online). Left: The boundary vorticity ω at 3 times.
Right: the horizon area element

ffiffiffi
γ

p
at the same 3 times.

FIG. 2 (color online). Left: The velocity power spectrum P at
time t ¼ 1008. Right: The normalized horizon curvature power
spectrum A=P at 4 different times.
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constructed from the null normal nM to the horizon and
an auxiliary null vector lM whose normalization is con-
veniently chosen to satisfy lMnM ¼ −1. The extrinsic
curvature is then given by ΘMN ≡ ΠP

MΠ
Q
N∇PnQ with

ΠM
N ≡ δMN þ lMnN . Since the horizon is at r ≈ 1 we choose

nMdxM ¼ dr and lMdxM ¼ −dt. The horizon curvature
satisfies ΘM

NΘN
M ¼ Θi

jΘ
j
i . For later convenience, we define

the rescaled traceless horizon curvature θij ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ=κ2Þ

p
Σi
j,

where Σi
j ≡ Θi

j − ð1=dÞΘn
nδ

i
j is the traceless part of the

extrinsic curvature and κ is defined by the geodesic
equation nM∇MnQ ¼ κnQ.
Also included in Fig. 2 are plots ofAðt; kÞ=Pðt; kÞwhere

the horizon curvature power spectrum is

Aðt; kÞ≡ ∂
∂k

Z
jk0j≤k

ddk0

ð2πÞd
~θ�ij ðt; k0Þ~θjiðt; k0Þ; (9)

with ~θij ≡
R
ddxθije

−ik·x. As Fig. 2 makes clear, our
numerical results are consistent with

Aðt; kÞ ∼ k2Pðt; kÞ: (10)

Evidently, bulk quantities are correlated with boundary
quantities. As we detail below, this is a consequence of the
applicability of the fluid-gravity correspondence.
Both qualitative and quantitative aspects of our results can

be understood in terms of relativistic conformal hydrody-
namics and the fluid-gravity correspondence. In the limit of
asymptotically slowly varying fields (compared to the
dissipative scale set by the local temperature T of the system)
Einstein’s equations (1) can be solved perturbatively with a

gradient expansion gμνðxμ; rÞ ¼
P

ng
ðnÞ
μν ðxμ; rÞ, where gðnÞμν is

order ð∂=∂xμÞn in boundary spacetime derivatives [8]. The

expansion coefficients gðnÞμν can be expressed in terms of the
boundary quantitiesT anduμ and their spacetimederivatives.

The leading order term gð0Þμν is just the locally boosted black
brane (4). Likewise, via Eq. (3) the bulk gradient expan-
sion encodes the boundary stress gradient expansion

hTμνðxμÞi ¼
P

nT
ðnÞ
μν ðxμÞ. The expansion coefficient Tð0Þ

μν ¼
ðε=dÞ½ημν þ ðdþ 1Þuμuν� is the stress tensor of ideal con-

formal hydrodynamics. Likewise, Tð1Þ
μν ¼ −ησμν is the vis-

cous stress tensor of conformal hydrodynamics with η the
shear viscosity and σμν the shear tensor given below in (15).
The underlying evolution of uμ and T and hence the bulk
geometry is governed by conservation of the boundary stress
tensor. Hence, at leading order in gradients the evolution of
uμ and T is governed by ideal relativistic hydrodynamics
and the geometry is given by the boosted black brane metric
(4). Indeed, it was recently demonstrated in [9] that turbu-
lence in d ¼ 2 ideal conformal relativistic hydrodynamics
gives rise to an inverse cascade and exhibits the Kolmogorov
scaling (8) with the former a consequence of enstrophy
conservation.

We find that our numerical metric gμν is very well
approximated by the fluid-gravity gradient expansion. To
perform the comparison, via Eq. (6) we extract uμ and ε
[and hence T ¼ ð8πGNεÞ1=3] from hTμνi. We then use uμ

and T to construct the expansion functions gðnÞμν computed in

[10]. We then take the difference ΔgðNÞ
μν ≡ gμν −

P
N
m¼0 g

ðmÞ
μν

and define the Nth order error to be maxfjΔgðNÞ
μν jg at each

time t. As shown in Fig. 3, the boosted black brane metric
(4) approximates the geometry at the 1% level. Including
first order gradient corrections further decreases the size of
the error.
It is natural that d ¼ 2 turbulent evolution gives rise to

dual geometries well approximated by locally boosted
black branes. First of all, irrespective of d, turbulent flows
require Reynolds number Re ≫ 1, or, equivalently, very
small gradients compared to T. This is precisely the regime
where the gradient expansions of fluid-gravity should be
well behaved. Second, the inverse cascade of d ¼ 2 turbu-
lence implies that gradients become smaller and smaller as
energy cascades from the UV to the IR. Therefore, once the
inverse cascade has developed, the fluid-gravity expansion
should become better and better behaved as time progresses.
This is precisely what we observe in Fig. 3. Therefore, Fig. 3
provides a quantitative measure of how the bulk geometry
(and, hence,

ffiffiffi
γ

p
) become smoother as time progresses.

At least for d ¼ 2 the above observation has powerful
consequences for studying turbulent black holes. Instead
of numerically solving the equations of general relativity
one can simply study the equations of hydrodynamics and
construct the bulk geometry via the fluid-gravity gradient
expansion. This is particularly illuminating in the limit of
nonrelativistic fluid velocities juj ≪ 1, where the bulk
geometry and boundary stress are asymptotically close to
equilibrium. As shown in [11], under the rescalings
t → t=s2, x → x=s, u → su, δT → s2δT, with δT the varia-
tion in the temperature away from equilibrium, in the limit
s → 0, the boundary evolution of δT and uμ implied by the
fluid-gravity correspondence reduces to the nonrelativistic
incompressible Navier-Stokes equation. Indeed, the above
rescalings are symmetries of the Navier-Stokes equation.
Likewise, in the s → 0 limit the geometry dual to theNavier-

Stokes equation is encoded in the expansion functions gð0Þμν

FIG. 3 (color online). Time evolution of the maximum differ-
ence between the exact metric and 0th and 1st order gradient
expansion.
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and gð1Þμν , which are known analytically [8,10]. At least for
d ¼ 2, where is it well known that solutions to the Navier-
Stokes equation are regular, we therefore expect many
known results from classic studies of turbulence—such as
the Kolmogorov scaling (8)—to carry over naturally and
semianalytically to gravity.
As an illustration of the above point we now turn our

attention to the horizon of turbulent black holes and argue
that the Kolmogorov scaling (8) together with the relation
(10) implies that the turbulent horizons are fractal-like in
nature with noninterger fractal dimension. To augment our
numerical evidence of (8) and (10) we assume the validity
of the fluid-gravity gradient expansion for any d and that
the system is driven by an external force into a statistically
steady-state configuration and that the Kolmogorov scaling
applies over an arbitrarily large and static inertial range.
Within the gravitational description the driving can be
accomplished by a time-dependent deformation of the
boundary geometry [3,11].
The fractal dimension of the horizon can be extracted

from the horizon area. Introducing a spatial regulator δx,
one could compute the horizon area A via the Riemann sum
A ≈ Σi

ffiffiffiffiffiffiffiffiffiffi
γðxiÞ

p
Δdxi, where each element Δdxi ∼ ðδxÞd. The

fractal dimension D is defined by the scaling

A ∼ ðδxÞd−D; (11)

in the δx → 0 limit.
To see how the Kolmogorov scaling (8) implies the horizon

has a fractal structure we employ the Raychaudhuri equation,

κLn
ffiffiffi
γ

p þ ζffiffiffi
γ

p ðLn
ffiffiffi
γ

p Þ2 − L2
n

ffiffiffi
γ

p ¼ ffiffiffi
γ

p
Σi
jΣ

j
i ; (12)

which relates the change in the horizon’s area element
ffiffiffi
γ

p
to

the traceless part of the horizon’s extrinsic curvature Σi
j. Here,

Ln ≡ nM∂M is the Lie derivative with respect to the null
normal to the horizon nM and ζ ¼ ðd − 1Þ=dÞ. In the
hydrodynamic limit of slowly varying fields salient to
turbulent flows, the Raychaudhuri equation simplifies to
Ln

ffiffiffi
γ

p ¼ ð ffiffiffi
γ

p
=κÞΣi

jΣ
j
i . Integrating over the horizon, it fol-

lows that the rate of change of the horizon area A is

dA
dt

¼
Z

ddx
ffiffiffi
γ

p
κ

Σi
jΣ

j
i ¼

Z
∞

0

dkAðt; kÞ; (13)

where A is given in (9). We therefore see thatA encodes the
growth of the horizon area.
Using the locally boosted black brane metric (4), Σi

j can
be computed as a gradient expansion. For geometries dual
to fluid flows in d spatial dimensions the leading order
results read [12]

ffiffiffiffiffi
γ

κ2

r
Σi
j ¼

1ffiffiffiffiffiffiffiffiffi
2πT

p
�

4πT
dþ 1

�
d=2

�
σij þ

ui

u0
σ0j

�
þOð∂2Þ;

(14)

with σμν ≡ ημασαν and σμν the hydrodynamic shear

σμν ¼ ∂ðμuνÞ þ uðμuρ∂ρuνÞ −
1

d
∂αuα½ημν þ uμuν�; (15)

which satisfies uμσμν ¼ 0 and ημνσμν ¼ 0. Using (9) and
(14) we see that at leading order in gradients Aðt; kÞ is
the power spectrum of ð2πTÞ−1=2½4πT=ðdþ 1Þ�d=2σμν .
Counting derivatives we see that (10) must be satisfied
at leading order in gradients, just as demonstrated in Fig. 2.
Assuming that the system is driven into a steady state and

the Kolmogorov scaling (8) applies, from (10) we see that
for any d we have A ∼ k1=3. Inserting a UV regulator into
the momentum integral in (13) at k ¼ kmax we conclude
that for kmax ∈ ðΛ−;ΛþÞ

dAðkmaxÞ=dt ∼ k4=3max: (16)

Identifying δx ∼ 1=kmax we conclude from (11) that the
area grows in time as if the horizon has fractal dimension

D ¼ dþ 4=3: (17)

Let us reiterate the features of our systems which make the
horizon fractal: (i) UV-sensitive area, (ii) scaling in coor-
dinate and momentum space (16), and (iii) statistical
translational invariance. The result (17) is a bit peculiar
as it is larger than the number of spatial dimensions of the
whole spacetime. But note that we are considering a null
hypersurface and thus the standard statement that the fractal
dimension should be smaller than the dimension of the
embedding space does not immediately apply [13]. It
would be interesting to understand this better.
The origin of the fractal-like structure of the horizon is

easy to understand. It is well known from fluid mechanics
that turbulent flows have a fractal-like structure with large
vortices being composed of smaller vortices which are
themselves composed of smaller vortices and so on. This
behavior can be seen in the plots of the vorticity in Fig. 1.
Via the fluid-gravity gradient expansions this fractal-like
structure imprints itself on the bulk geometry. Moreover,
upon using Hawking’s formula to relate the horizon area to
entropy, the Raychaudhuri equation (13) combined with
(14) translates into the familiar expression for entropy
growth in hydrodynamics dS=dt ¼ R

ddxð2η=TÞσμνσμν
with η the shear viscosity of the fluid. Thus the fractal
horizon can be understood as the geometric counterpart of
the familiar fact that turbulent flows generate entropy much
more rapidly than laminar flows with the same rate of
energy dissipation. Moreover, the size of the domain kmax ∈
ðΛ−;ΛþÞ in which the scaling (16) applies encodes the
hierarchy of scales in which the horizon contains self-
similar structures. The UV terminusΛþ of the inertial range
is bounded by the dissipative scale T, where hydrody-
namics breaks down [14]. However, the IR terminus of the
scaling (16) is bounded only by the system size. Therefore,
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the scaling (16) can be made to apply over an unboundedly
large domain and the horizon can have geometric features
over an unboundedly large hierarchy of scales.
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