
Entanglement Monotonicity and the Stability of Gauge Theories
in Three Spacetime Dimensions

Tarun Grover
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 11 February 2014; published 14 April 2014)

We employ the recent results on the generalization of the central charge theorem to three spacetime
dimensions to derive nonperturbative results for several strongly interacting quantum field theories,
including quantum electrodynamics (QED-3), and the theory corresponding to certain quantum phase
transitions in condensed matter systems. In particular, by demanding that the universal constant part of the
entanglement entropy decreases along the renormalization group flow (F theorem), we find sufficient
conditions for the stability of QED-3 against chiral symmetry breaking and confinement. Using similar
ideas, we derive strong constraints on the nature of quantum critical points in condensed matter systems
with topological order.
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Strongly interacting quantum field theories in three
spacetime ð2þ 1ÞD dimensions often arise as a low-energy
description of condensed matter systems and also serve as a
test bed for phenomena in ð3þ 1ÞD. Since there are only a
few interacting quantum systems that can be solved exactly,
it is natural to ask whether there might exist general
principles that constrain the set of possibilities for a given
problem, even if they do not provide a direct solution, An
example of such a principle is the “central charge theorem”
[1] in ð1þ 1ÞD and its four-dimensional version, the “a
theorem” [2–4], which constrains the renormalization
group (RG) flows of Lorentz invariant systems. In this
Letter, we employ the recent generalization of the central
charge theorem to ð2þ 1ÞD, the “F theorem” [5–11], to
derive the low-energy behavior of several strongly inter-
acting ð2þ 1ÞD theories of interest to condensed matter
physics.
Our work is motivated by the continual theoretical and

experimental interest in discovering and understanding
quantum phases of matter that lie beyond Landau’s order
parameter description [12]. Two prime examples of such
phases are fractional quantum Hall phases and quantum
spin liquids (QSL) [12–14]. A unique feature of these
phases is that their ground state is “topologically ordered":
despite short-range correlations for all local operators, the
ground state is not smoothly connected to a direct product
state [12,15–17]. A related class of phases are gapless spin
liquids, which again lack a local order parameter, and
whose dynamics is often described by strongly coupled
gauge theories such as the conformal phase of QED or
QCD in ð2þ 1ÞD. In this Letter, we show that the F
theorem sheds light on the following two important
questions that concern such phases.
(1) What is the nature of quantum phase transitions

between conventional symmetry-broken phases and topo-
logically ordered phases? We show that the F theorem

implies that, on very general grounds, such phase tran-
sitions cannot be described by conventional Landau-
Ginzburg order parameter theory.
(2) When are gapless spin liquids stable? We make

progress on this question by determining sufficient con-
ditions for the stability of the deconfined phase of interact-
ing gauge theories in ð2þ 1ÞD, which describe “algebraic
quantum spin liquids” [12,18–24]. Specifically, we provide
a nonperturbative upper bound on the amount of matter
content required to deconfine QED in ð2þ 1ÞD and also
discuss generalization to non-Abelian gauge theories
(QCD). We also address the related problem of the phase
diagram of noncompact QED in ð2þ 1ÞD, where one
undergoes a quantum phase transition from a symmetry-
breaking Goldstone mode phase to a symmetric phase
as one tunes the number of flavors [25,26]. This is the
ð2þ 1ÞD analog of the chiral symmetry breaking (CSB) in
the standard model of particle physics in ð3þ 1ÞD [27].
Let us recall the “c theorem” [1]: the central charge c of a

conformal field theory (CFT) decreases along the renorm-
alization group flow, as one flows from a UV fixed point to
an IR fixed point. As an example, a relevant perturbation to
the tricritical Ising CFT (c ¼ 7=10) can result in only two
unitary CFTs: the Ising critical point (c ¼ 1=2) or a fully
gapped system (c ¼ 0). There is a similar theorem for four-
dimensional CFTs, Cardy’s a theorem [2,3] that has been
placed on rigorous footing [4] in the recent past.
Recently, there has been progress in developing an

analog of the c theorem for three spacetime dimensions
[5–11]. Specifically, Casini and Huerta [7] have shown that,
for Lorentz invariant theories, if one writes the entangle-
ment entropy for a circular region of radius R as
SðRÞ ¼ αR − γ þOð1=RÞ, the universal constant γ
decreases along the RG flow: γUV ≥ γIR. A related develop-
ment has been the conjecture, accompanied by a perturba-
tive proof, that the universal part of the free energy of a
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CFT on a three-sphere S3 (denoted as F) decreases along
the RG flow and takes a stationary value at the fixed points
[8,9]. Reference [11] showed that F ¼ γ at the conformally
invariant fixed points. Therefore, the nonperturbative result
of Ref. [7] γUV ≥ γIR automatically implies FUV ≥ FIR for
flows between CFTs. In the rest of this Letter, we will
consider consequences of this statement for a variety of
condensed matter systems.
Non-Landau quantum phase transitions and the F

theorem.—Gapped QSLs are interacting spin systems that
have intriguing properties such as anyonic excitations in
ð2þ 1ÞD, and more generally, a robust set of degenerate
ground states on a torus (topological order) [12,15,16].
Another hallmark of these phases is the presence of
topological entanglement entropy Ftopo: the entanglement
entropy of the ground state for a disk-shaped subregion of
size L scales as SðLÞ ¼ αL − Ftopo þOð1=LÞ, where Ftopo
is a universal number that depends only on the phase of
matter under consideration, analogous to a gapless CFT in
ð2þ 1ÞD [28,29], and α is nonuniversal. Indeed, a different
way to understand this result is that the low-energy
effective theory of gapped QSLs is a topological quantum
field theory, which is a very special kind of CFT with zero
(rather than infinite) correlation length.
Locally, QSLs are indistinguishable from a gapped

featureless paramagnet (FP) which, unlike a QSL, has a
unique ground state on a torus, and is smoothly connected
to a direct product state by local unitary operators [17]. The
local indistinguishability follows from the fact that neither a
gapped QSL nor a FP has a local order parameter, and
consequently, the correlation functions of all local oper-
ators decay exponentially in either of these phases. Do
QSLs differ from FPs when one undergoes a phase
transition to an ordered phase which has a local order
parameter? Case-by-case evidence suggests that such an
expectation is indeed correct [30,31]. We now show
that this result follows on general grounds from the F
theorem and reflects the nonlocal nature of entanglement in
a QSL.
Let us remind ourselves that the phase transition between

a FP and a symmetry-breaking order parameter phase can
be understood within the conventional Landau-Ginzburg-
Wilson paradigm. As an example, consider a bilayer spin-1/
2 Heisenberg model in ð2þ 1ÞD with interlayer coupling
J⊥ ≫ J∥ [30]. As J⊥ is reduced, at a particular critical
value of the ratio J⊥=J∥, the system undergoes a quantum
phase transition in the O(3) Wilson-Fisher universality to
an ordered antiferromagnet.
We now show that despite local indistinguishability

between a FP and a QSL, a quantum phase transition
out of a gapped SU(2) symmetric QSL to a symmetry
broken phase can never be in the O(3) Wilson-Fisher
universality class. We provide a proof by contradiction
(Fig. 1). Let us assume that such a transition were indeed
in the O(3) Wilson-Fisher universality class. Since in

ð2þ 1ÞD the Gaussian fixed point is unstable towards
the Wilson-Fisher fixed point, the F theorem implies that

FGaussian ≥ FOð3ÞWilson-Fisher ≥ Ftopo; (1)

where FGaussian ¼ 3Fscalar ≈ 0.18, Fscalar ≈ 0.06 being the
F for a free real scalar [9,32]. Ftopo, on the other hand,
takes only a discrete set of values, since it is related to
the quantum numbers of anyonic excitations [28,29]. The
smallest possible value of Ftopo is attained by the Laughlin
ν ¼ 1=2 state with Ftopo ¼ logð ffiffiffi

2
p Þ ≈ 0.35. Therefore,

Eq. (1) can never be satisfied and, therefore, our initial
assumption about the existence of an O(3) Wilson-Fisher
transition must be wrong, even though the global symmetry
is just SU(2). Indeed, all known transitions between an
ordered phase and a topologically ordered phase satisfy the
equation Fcritical > Ftopo [10,33,34] whenever Fcritical is
calculable (e.g., via 1=N expansion). We note that there
already exist several realistic models of frustrated magnets
[35–37], which seemingly exhibit a direct phase transition
between a topologically ordered paramagnet and an SU(2)
symmetry-broken state, and the value Fcrit for these
transitions must satisfy Fcrit ≥ Ftopo by the above
argument.
The above analysis readily generalizes to systems with a

global U(1) symmetry. For example, the transition between
a superfluid and a ν ¼ 1=2 fractional quantum Hall state of
bosons cannot be a conventional O(2) transition, which is
indeed consistent with the proposed theory for this tran-
sition [38]. On the other hand, the transition between an
integer quantum Hall state of bosons [39,40] and a super-
fluid is allowed to be in the O(2) universality class, since
the integer quantum Hall state has F ¼ 0. Indeed, con-
sistent with this observation, the critical theory for such a
transition has been argued to be just Wilson-Fisher O
(2) [41].
Strongly interacting gauge theories and the F theo-

rem.—Strongly interacting gauge theories often display
rich phase diagrams as a function of the field content
(e.g., number of flavors) and other tuning parameters

FIG. 1. A RG flow that is prohibited due to the F theorem.
Gaussian, W-F, Goldstone, and TQFT refer, respectively, to the
Gaussian fixed point, the Wilson-Fisher fixed point, a Goldstone
mode phase, and an arbitrary topologically order phase of an
SU(2) symmetric spin system in ð2þ 1ÞD.
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(e.g., temperature). In this section, we will explore the
phase diagram of ð2þ 1ÞD gauge theories and show that
the F theorem can be used to deduce a number of general
results in this direction. Apart from being of general interest
[25,26,42], these theories describe a large class of gapless
quantum spin liquids [12,18–24], which are phases of
interacting quantum spins without an order parameter
description, and without any well-defined quasiparticles.
Our results will have crucial implications for the stability of
these phases.
We focus mainly on quantum electrodynamics in

ð2þ 1ÞD (QED-3), which is the theory of fermions coupled
to a U(1) gauge field, and ask the following question: when
do fermions survive as gapless excitations in the low-
energy theory? There are at least two known mechanisms
that can lead to spontaneous mass generation for fermions
—chiral symmetry breaking [25,26] and confinement [43].
Of course, confinement may be accompanied by CSB, but
it is important to make this distinction because CSB can
occur even in the absence of monopoles (noncompact
QED-3), while confinement is relevant only to the compact
QED-3. We briefly discuss generalization to non-Abelian
gauge theories later.
CSB in noncompact QED-3.—The Lagrangian for the

noncompact QED-3 is

LQED-3 ¼
XNf

a¼1

ψ̄a½−iγμð∂μ þ iaμÞ�ψa þ
1

2e2
FμνFμν; (2)

where ψ is a two-component Dirac fermion with an even
number (¼ Nf) of flavors, and aμ is a noncompact U(1)
gauge field. Large-Nf arguments indicate that at Nf ≫ 1,
the theory is a conformal field theory with unbrokenUðNfÞ
symmetry, while below a critical Nf ¼ Nfc, the fermions
acquire a mass gap due to the spontaneously symmetry
breaking UðNfÞ → UðNf=2Þ ×UðNf=2Þ, where the pat-
tern of symmetry breaking is uniquely dictated by the Vafa-
Witten theorem [26,42]. In particular, Nf flavors of the
fermions spontaneously acquire a positive mass, while the
rest of the Nf flavors acquire a negative mass, thus
preserving the time-reversal symmetry.
A rough estimate on Nfc follows by simply comparing

the F of interacting QED-3 at large Nf with that of the
Goldstone mode phase. At large Nf, FQED-3 ≈ NfFDirac þ
1
2
logðπNf=8Þ [10], where FDirac ≈ 0.22 is the F for a free

Dirac fermion [32]. On the other hand, FGoldstone ¼
ððN2

f=2Þ þ 1ÞFscalar, where the factor of ðN2
f=2ÞFscalar

comes from the Goldstone modes while the photon in
the IR contributes an additional Fscalar [44,45] (recall that
the photon in a noncompact QED remains gapless in the
IR). Because of the different scaling of F with respect to Nf
in the two phases, one finds that a symmetric phase is
expected above Nfc ≳ 10.
Next, we obtain a nonperturbative upper bound on Nfc,

under assumptions detailed below, by considering a

deformation of superconformal QED-3, whose F is known
exactly. The supersymmetric theory we consider is max-
imally chiral N ¼ 2 superconformal QED-3 (SQED-3),
whose field content consists of Nf Dirac fermions ψ , Nf
complex scalars ϕ, a gauge field ~a, (fermionic) gaugino λ,
and a real scalar θ [10]. For completeness, we provide the
action for this theory in a component form in the
Supplemental Material [46]. We deform this theory by a
mass term for ϕ (∝ jϕj2), as well as a mass for θ (∝ θ2).
Note that these mass terms retain all the symmetries, in
particular, the UðNfÞ flavor symmetry as well as the time-
reversal symmetry. This ensures that no explicit mass is
generated for the fields ψ and λ. We can now integrate out θ
and ϕ, which generates new interactions for the leftover
fields λ, ~a, ψ :

L ¼ LQED-3 −
i
4
λ̄γμ∂μλþ ΔL1; (3)

where ΔL1 ∝ λ̄λψ̄ψ . For Nf ≫ 1, ΔL1 is irrelevant at the
QED-3 fixed point, and, therefore, the SQED-3 flows to
QED-3. We now assume that this continues to be true at a
finite Nf until QED-3 itself becomes unstable to a CSB
phase at Nfc. This expectation is based on the fact that
SQED-3 has more matter content compared to QED-3, and
is therefore not expected to undergo a CSB instability
before QED-3 does, as Nf is decreased from infinity.
Additonally, the scaling dimension of the operator ψ̄ψ, in a
large-Nf expansion, is given by Δψ̄ψ ¼2þð128=ð3π2NfÞÞ
[49]. Thus, it is reasonable to assume that ΔL1 continues to
be irrelevant at the QED-3 fixed point for the values of Nf

we encounter below (Nf ≈ 10). Assuming these assump-
tions hold, the F theorem implies FSQED-3 ≥ FQED-3 þ
FDirac and FQED-3 ≥ FGoldstone. One can now eliminate
FQED-3 to find the inequality FSQED-3≥FGoldstoneþFDirac.
Both FSQED-3 and FGoldstone are known exactly. From

Ref. [8], FSQED-3¼Nf

2
logð2Þþ 1

2
logðNfπ=4Þþððð−1Þ=2Þþ

ð20=3π2ÞÞð1=NfÞþOðN−2
f Þ, where we only quote the

result at large Nf, which suffices for our purpose (i.e.,
using the exact result does not change the bounds on Nfc).
Solving the aforementioned inequality, one finds that CSB
is impossible when Nf ≥ 14.
We note that our arguments have some similarity with

those presented in Ref. [50], where it was suggested that the
thermodynamic free energy density in flat space decreases
under RG. However, there are known counterexamples to
the monotonicity of free energy [8,51] and, therefore, it
cannot be used to constrain RG flows.
Deconfinement in compact QED-3.—The Lagrangian for

compact QED-3 is exactly the same as Eq. (2) except that
now the monopoles in the gauge field are allowed. We are
again interested in the phase diagram of this theory as a
function of the number of flavors Nf. At Nf ¼ 0, monop-
oles proliferate and the gauge field confines leading to mass
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gap [43]. In the opposite limit, Nf ≫ 1, the theory is
expected to be in the deconfined phase [19]. Therefore,
there exists a critical Nfc below which compact QED-3
confines. More generally, one can imagine four distinct
possibilities for the fate of this theory in the IR. (I) The
theory confines with a mass gap to all excitations. (II) The
theory confines while breaking the flavor symmetry UðNfÞ
down to some smaller subgroup resulting in massless
Goldstone bosons. (III) The theory deconfines with mass-
less fermions in the IR. (IV) The theory deconfines while
maintaining gap to the fermions and gauge fields in the
IR [52].
In a remarkable paper, Vafa andWitten [26] argued that in

ð2þ 1ÞD, whenever there exist Nf ≥ 6 massless fermions
coupled to massless gauge bosons in the UV, then there
necessarily exist massless particles in the IR. What is the
nature of the massless phase when Nf ≥ 6? The low-lying
excitations in this massless phase may be the Goldstone
modes associated with CSB, or they could also correspond to
excitations of a (conformal) deconfined phase of QED-3
where the UðNfÞ symmetry is unbroken. We now show that
the F theorem allows one to deduce a bound on Nf above
which the latter possibility is necessarily realized.
To begin with, when Nf ≥ 6, the Vafa-Witten theorem

immediately rules out possibilities (I) and (IV). Furthermore,
if there exists a Goldstone mode phase for Nf ≥ 6, the
pattern of flavor symmetry breaking is again constrained
to be UðNfÞ → UðNf=2Þ ×UðNf=2Þ [26]. Entanglement
monotonicity implies FQED-3 ≥ ðN2

f=2ÞFscalar. One can
solve this inequality approximately by employing the large
Nf result for FQED-3, and one finds that above Nf ≈ 10, the
theory must be in a deconfined gapless phase. To obtain a
strict bound on Nfc, we again deform maximally chiral
N ¼ 2 SQED-3 as in the case of noncompact QED. This
procedure, under the same assumptions as before, leads to
the conclusion that the theory deconfines when Nf ≥ 14.
Non-Abelian Gauge theories.—The above arguments

generalize to non-Abelian gauge theories. Consider
QCD-3 with an arbitrary gauge group (Nc colors) coupled
to Nf fermions in the fundamental representation. To the
leading order in Nf, F for the deconfined phase is given by
NfNcFDirac, while that for the confined Goldstone phase is
given by ðN2

f=2ÞFscalar. Entanglement monotonicity along
with Vafa-Witten theorems imply that QCD-3 is stable
against confinement when Nf≳2NcðFDirac=FscalarÞ≈8Nc.
This is consistent with the general intuition that as Nc
increases, so does the critical number of fermions required
for deconfinement [53,54]. One can systematically improve
upon this estimate by considering 1=Nf corrections to the
leading result for the entanglement of non-Abelian gauge
theories [10], or by following the route of sandwiching the
RG fixed point corresponding to QCD-3 between a SUSY
QCD-3 and a Goldstone mode phase.
Discussion.—In this Letter, we employed the recent

results on the monotonic behavior of the universal part of

the entanglement under RG [5–11] to constrain the phase
diagram of topologically ordered phases and gauge-matter
theories in ð2þ 1ÞD. In particular, we showed that the
transitions to topologically ordered paramagnets in an SU(2)
symmetric spin system can never lie in an O(3) universality
class. In the context of gauge theories, we obtained non-
perturbative bounds on the matter content sufficient to
stabilize the conformal, deconfined phase of compact
QED-3, and the analogous symmetric phase of noncompact
QED-3. We also discussed generalizations to non-Abelian
gauge theories. One might wonder if one could improve the
bounds for confinement or CSB by a more clever choice of
RG flow. Let us consider the RG flow from a theory
consisting of free fermions and a free photon to QED-3,
as the coupling (electric charge) is turned on. However,
F ¼ ∞ for a free photon [10], which seemingly does not
provide a useful bound. As discussed in the Supplemental
Material [46], under certain assumptions, it is conceivable
that one can regularize the infinite F for a free photon in the
UV, while considering the flow to interacting QED-3. This
analysis suggests that the critical number of flavors for
deconfinement, as well as CSB, satisfy a stronger con-
straint Nfc < 8.
Before concluding, we briefly mention a straightforward

application of the F theorem to classical statistical mechan-
ics. Consider an OðnÞ⊕OðmÞ vector model in d ¼ 3.
Perturbative RG suggests that when nþm ≤ 3, the most
stable fixed point has an enlarged OðnþmÞ symmetry,
while when n, m ≫ 1, the most stable fixed point corre-
sponds to decoupled OðnÞ, OðmÞ Wilson-Fisher fixed
points [55]. The F theorem provides a nonperturbative
insight into this problem. When n, m ≫ 1, the decoupled
fixed point has F ¼ FOðnÞ þ FOðmÞ ≈ ðnþmÞFscalar − 2c,
while the fixed point with enlarged symmetry has
F¼FOðnþmÞ≈ ðnþmÞFscalar−c, where c ¼ ðζð3Þ=16π2Þ
is the universal subleading correction to F of the
Wilson-Fisher fixed point [9]. Clearly, the decoupled fixed
point is comparatively more stable. On this note, it will be
interesting to consider further applications of the F theorem
to multicomponent Landau-Ginzburg models.
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