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The emergence of a classical spacetime from any quantum gravity model is still a subtle and only
partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more
fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime
constituents, will present modified kinematics at sufficiently high energies. We consider here the
phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative
hydrodynamics as a general framework for the description of the energy exchange between collective
excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for
elementary particles can be derived from dispersion relations and used to provide strong constraints on the
base of current astrophysical observations of high-energy particles.
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Introduction.—For many years now, quantum gravity
(QG) has been a frustrating subject, a theoretical program
devoid of strong guidance from experiments and observa-
tions. The so-called QG phenomenology field has been a
recent answer to this frustration, a quantum leap to bypass
the detailed technical issues about the functionality of QG
models and to actually focus on the possible scenarios for
the emergence of a classical spacetime from these discrete
quantum models.
Such an issue is at the core of many, if not all, the most

pressing questions of the viable models of QG, as the
microscopic theory does not necessarily share all the
symmetries of a classical spacetime. How and by which
mechanisms such symmetries can be recovered are obvi-
ously of the uttermost importance in order to subject these
models to the observation test.
In this view, it has often been conjectured (and in some

QG toy models observed) that Lorentz symmetry might
be violated in QG (see, e.g., Ref. [1] for a recent review),
and indeed much attention has been given to constraints
on modified dispersion relations associated with the
breakdown of rotation and boost invariance [2].
However, much less attention has been given to
dissipative phenomena induced by the possible exchange
of energy between matter and some fundamental constitu-
ents that could be at the base of the emergent spacetime.
Generically, for the propagation of perturbations in a

medium in a causality preserving theory, dispersion
and dissipation are related by the so-called Kramers-
Kronig relations [3], according to which dispersive effects
can only arise if dissipative effects are also present.
Therefore, in an emergent gravity picture considering
dispersive effects, neglecting dissipative ones seems
inconsistent.

Possible dissipative effects in the context of fundamental
theories of gravity have been discussed, e.g., in Ref. [4], as
an infrared signal of the coupling of matter fields with
gauge modes propagating in extra dimensions, while
dispersive phenomena in emergent spacetime have been
discussed in causal set theory [5,6]. Effective field theories
(EFTs) with broken Lorentz invariance in the ultraviolet
sector and showing both dispersion and dissipation have
been studied in Ref. [3], where the links with phenom-
enological QG and some brane world scenarios have also
been discussed. According to Ref. [3], it is not justified to
assume, as it has been done in the past, that modified
dispersion relations arising in QG models do not contain
dissipative terms, if Lorentz invariance breaking is to be a
dynamical process. The presence of dissipation can pos-
sibly invalidate previous limits.
In this Letter, we show for the first time limits on

dissipative effects derived from high-energy astrophysics
observations. In order to be as generic as possible, we do not
adopt directly the EFT description given in Ref. [3]—which
would require a detailed modeling—but we shall rather
appeal to the so-called analogue gravity framework [7]
describing the dynamics of the matter propagating on an
emergent spacetime as collective excitation in hydrodynamics.
We remark that there are systems whose particular

internal symmetries prevent dissipative effects from being
present at the lowest order in the hydrodynamics approxi-
mation, without violating the Kramers-Kronig relations.
Bose-Einstein condensates are well-known analogue grav-
ity examples of this fact. In this sense, the strong obser-
vational bounds presented here imply that any emergent
spacetime scenario should behave similarly; i.e., its hydro-
dynamic description should be close to that of a superfluid.
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An analogue gravity lead.—The framework of analogue
gravity [7] has been widely used as a test field for the
phenomenology of quantum field theory on a curved
spacetime. Linear perturbations in an inviscous and irrota-
tional flow propagate as fields on a curved spacetime,
whose metric, the so-called acoustic metric, depends on the
background flow density and velocity [7]. In the presence
of kinematical viscosity, such a picture is, however,
changed. In this brief section, we shall review the simple
case of an irrotational, barotropic fluid with nonzero
kinematic or shear viscosity ν and show how this can
naturally provide a modified dispersion relation which
entails dissipative effects (we consider here for simplicity
an incompressible fluid, i.e., with zero bulk viscosity). A
detailed discussion can be found in Ref. [8]. Technically,
the collective excitations of the medium are gravitons;
hence, we should apply our reasoning only to these
particles (albeit, one expects that matter should also emerge
in complete QG scenarios). Nonetheless, radiative
corrections-induced percolation of Lorentz breaking terms
(from the gravitational to the matter sector) is generically
foreseeable (see, e.g., Ref. [9] for the case of dispersive
effects).
If the background fluid flow is at rest and homogeneous

(bulk velocity ~v0 ¼ 0, with position-independent density ρ0
and speed of sound c), then the viscous wave equation for
the perturbations in the velocity potential vμ ¼ ∇μψ is
simply

∂2
tψ1 ¼ c2∇2ψ1 þ

4

3
ν∂t∇2ψ1; (1)

where ψ1 is a linear perturbation of ψ . This equation may
be found, e.g., in Ref. [10] and is explicitly derived
in Ref. [8].
In order to find the corresponding dispersion relation,

one can adopt as usual the so-called eikonal approximation
in the form ψ1 ¼ aðxÞ expð−i½ωt − ~k · ~x�Þ, with aðxÞ a
slowly varying function of position. Then, the viscous wave
equation in the eikonal approximation reduces to
−ω2 þ c2k2 − iν4=3ωk2 ¼ 0, yielding the following
dispersion relation for sound waves:

ω ¼ �
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The first term specifically introduces dispersion due to
viscosity, while the second term is specifically dissipative.
The previous equation can be further simplified to
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up to higher orders of (νk=c). This is a concrete example of
how modified dispersion relations due to the underlying
microscopic structure of an emergent spacetime can be
endowed with dissipative terms. In this case, the
lowest-order dissipative term, which is ruled by the same
microscopic scale provided by the viscosity, would
appear at lower energies than the dispersive, quartic
term.
Such dissipative dispersion relations clearly violate

unitarity. However, in this toy model, dissipation is due
to energy exchange with extra degrees of freedom
which, being not observed, are traced away [3]. In this
sense, (apparent) dissipation can be a signal of extra
degrees of freedom in putative (unitarity preserving)
fundamental theories being neglected in the effective
theory.
Generalized dissipative hydrodynamics.—If we now

come back to the problem of the phenomenology
associated with an emergent spacetime from some,
unspecified, QG model, we are faced with a set of pressing
questions, which basically deal with our ignorance of the
models and the viable mechanisms leading to a classical
spacetime.
In this sense, one quite general approach might consist in

assuming that at sufficiently low scales, any QG theory will
allow us to describe the propagation of matter (or gravitons)
on the emergent spacetime along the equations one could
derive from hydrodynamics. Implicitly, we are assuming
that a description of matter as collective excitations above
the spacetime medium is possible at scales much longer
than the typical scales of the fundamental constituent
interactions. This is tantamount to assuming that some
EFT description is viable given that hydrodynamics,
even a dissipative one, can be described within this
formalism [11].
When adopting hydrodynamics as a large scale model of

an emergent spacetime, it is quite interesting to keep in
mind that the above discussed dissipation appears in a
gradient expansion as a first-order correction to the perfect
fluid equations. In general, higher-order terms can be
considered as well, and such operators will show a similar
structure to the last term on the right-hand side of Eq. (1);
i.e., they will be generically of the form ∂t∇n. Hence,
dissipative terms will always appear in the dispersion
relation with odd powers of the three-momentum k once
at high energy one takes E ≈ k.
The generalized Navier-Stokes equation will then read

∂2
tψ1 ¼ c2∇2ψ1 þ

X∞

n¼2

4

3
νn∂t∇nψ1; (4)

leading to the following dispersion relation
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with Ai¼4=3νic, Bj
i ¼ 8=27νi=cþ 4=3νjc, Lj

i ¼ 4=
3νic − 8=9ν2j , and Mk

i;j ¼ 4=3νicþ 8=27ν3j=c − 8=9ν2k.
The structure of the modified dispersion relation is such

that it is not possible to proceed simply order by order to
account for all the possible terms. Actually, one should not
attempt to identify the index of the expansion j with the
power index of the derivative term ∇n in Eq. (4). The
contribution of each term of order n in the derivative
expansion is instead to be searched for in all those terms
which at some order j will contain the parameter νn.
As expected, Eq. (4) shows alternating dissipative and

dispersive terms with odd and even powers of k, respec-
tively. Assuming that the origin of these deviations from
the perfect fluid limit is related to the behavior of the
“spacetime fluid” close to the Planck scale, it is natural to
rescale the coefficients of Eq. (4) by suitable powers of the
Planck energy so as to make the coefficient dimensionless
and make explicit the suppression of higher power terms
(assuming, as a matter of naturalness, that the remaining
dimensionless coefficients are a priori roughly of the same
magnitude).
Let us start truncating the above dispersion relation to the

lowest order n ¼ 2, and so regaining Eq. (3), with a suitably
rescaled coefficient as described above. We get

ω2 ¼ c2k2 − iσ2c2
k3

MPl
; (5)

where σ2 ¼ ð4ν2MPlÞ=3c is the dimensionless coefficient
controlling the magnitude of the Lorentz violation
and MPl ¼ 1.22 × 1019 GeV.
We have neglected extra—nonderivative expansion

generated—dispersive effects at the same k3 order (e.g.,
the CPT odd dimension five operators characterizing the
EFT photon dispersion relation [12]); however, they are not
relevant in this context. Indeed, taking the best constraint
ξ≲ 10−16 on such operators [13], the maximal correction
to the photon energy in the ultrarelativistic limit is
ω=k − 1≃ ξk=ð2MPlÞ ∼ 4 × 10−31 at 100 TeV. On the
other hand, the constraints we shall place on σ are so
strong so as to not invalidate the aforementioned constraints
on modified dispersion.

Computing the rate.—A major obstruction for casting an
observational constraint on Eq. (5) consists in the fact that
dissipative effects would imply to work with a nonunitary
EFT. This could be avoided by resorting to a system-
environment ansatz [3,14], but in this case, we would work
with a more complicated system for which the results can
even be model dependent. We will instead follow the lead
of Ref. [3] for obtaining a generic estimate of the energy
loss rate.
Dispersive effects in vacuum are fully specified by the

imaginary part of the self-energy. The energy loss rate Γ
can be readily obtained by inverse Fourier transforming the
retarding Green function corresponding to the dispersion
relation of Eq. (5). In our case, Γ can then be written as

σ2c2
k3

MPl
≡ 2ωΓ; (6)

where Γ represents the energy loss rate in the underdamped
regime Γ ≪ k. Assuming ω ∼ k for our purposes, we can
identify the energy loss rate Γ ≈ σ2k2=ð2MPlÞ. This result
agrees with what one would find by applying naïvely the
well known relations for unstable particles in the Breit-
Wigner formalism. With the lifetime τ ¼ ℏ=Γ, we have
now all the necessary information to cast our constraint.
Constraints on “spacetime viscosity.”—For an ultra-

relativistic particle with momentum p traveling over a long
distanceD, a constraint is obtained by requiring its lifetime
τ to be larger than the propagation time D=c, that is,
τ ≥ D=c or cℏ=Γ ≥ D.
Let us consider the observed 80 TeV photons from the

Crab nebula (see Ref. [15] for an up-to-date compilation
of spectral data) which is at a distance DCrab ≃ 1.9 kpc.
We then obtain (see also Fig. 1)

σ2 ≤
2cℏ

DCrabð80 TeVÞ2 MPl ≈ 1.3 × 10−26: (7)
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FIG. 1 (color online). Mean free path of photons subject to
dissipation versus energy. The dotted horizontal blue line
represents the distance of the Crab nebula, while the long-dashed
green horizontal line is for the reference distance of Mkn 501.

PRL 112, 151301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

151301-3



Noticeably, in the standard model of the Crab nebula,
such very high-energy photons are produced by inverse
Compton scattering of electrons and positrons accelerated
and propagating in the nebula. Therefore, the same con-
straint can be applied for such leptons, by assuming,
conservatively, that they have at least the same energy as
the produced photons (by energy conservation) and by
properly rescaling the propagated distance to a parsec,
which is the typical size of the nebula. Hence, the constraint
is weakened by a factor 103 for electrons or positrons.
A constraint of order 2 × 10−27 can be obtained for

neutrinos, given the detection of a bunch of extraterrestrial
neutrinos with energies between 30 and 250 TeV by
IceCube [16–18]. Their energy spectrum is consistent with
a single power law [19]. Assuming conservatively that they
are of Galactic origin, we can set their propagation distance
D≃ 8 kpc (this is approximately the distance between
Earth and the Galactic center). Taking then for definiteness
Eν ≃ 100 TeV, the constraint for neutrinos would be about
6 times better than the one we placed for photons.
Even stronger constraints can be placed if extragalactic

objects are considered. For example, the Mkn 501 has been
observed up to 24 TeV [20]. Its redshift is estimated as
z ¼ 0.034, which corresponds to an effective distance of
∼147 Mpc. [The effective distance is computed as
D ¼ 1=H0

R
z
0 dz

0ð1þ z0Þ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ z0Þ3

p
, and we

used the values of H0 ¼ 71 km=s=Mpc, ΩΛ ¼ 0.7, and
Ωm ¼ 0.3.] The implied constraint on σ2 is then of the order
of 3 × 10−30 (see again Fig. 1).
One possible caveat can arise from the fact that we do not

know observationally the energy spectrum of the photons
leaving these sources. This might be of particular relevance
for variable objects, like Mkn 501. It may therefore happen
that the initial spectrum and the dissipation effects combine
to yield by chance the observed spectrum at Earth.
However, the energy loss rate Γ is strongly dependent
upon energy. The observed very high-energy spectrum of
the Crab nebula, on the other hand, is remarkably feature-
less up to the highest energies, thereby hinting at the
absence of energy-dependent effects.
Even stronger constraints can, in principle, be derived

considering the extragalactic propagation of ultrahigh-
energy cosmic rays, with energy above 1018 eV.
However, in that case, we should first understand how
dissipation would affect compound particles, which goes
much beyond the scope of this Letter. Finally, gravitational
waves could also, in principle, provide constraints in case
of detection. Unfortunately, current experiments are sensi-
tive to waves which are far too low energy (below 1 Hz) for
providing meaningful constraints.
Constraints on higher-order terms.—The constraint

derived above places a very strong limit on the coefficient
ν2 in the expansion of Eq. (4). However, higher-order terms
are not naturally as suppressed given that, e.g., ν3 and ν4,
being of different dimensionality than that of ν2, do not

naturally need to be of the same magnitude. Indeed,
nothing prevents a medium with effectively zero kinematic
viscosity to have nonzero higher-order transport coeffi-
cients; otherwise, we would end up with the unphysical
case of a fluid being perfect at all scales.
We consider then such higher-order terms in our expan-

sion of Eq. (4) and, in particular, focus on the next term
producing a dissipative contribution to the dispersion
relation, assuming ν2 ≈ 0. Also, in this case, one can check
that given the best constraints on the σ3 ≡ ð4ν3M2

PlÞ=3c
coefficient of the dispersive term of order Oðk4Þ, σ3 ≈
Oð10−7 − 10−8Þ (see, e.g., Ref. [1]), we can safely neglect
its effect on the energy of photons at our reference energy
of about 100 TeV.
The next contribution is then imaginary ω2 ≃

c2ðk2 þ ið2=3Þðν4=cÞk5Þ. Note, however, that this has
opposite sign with respect to the one induced by the ν2
term. Assuming that ν4 > 0, this implies that the effect
induced at this order is not dissipation, rather amplification,
with the matter field increasing its intensity as it propagates.
Although a full EFT derivation of such higher-order

derivative terms (e.g., along the approach of Ref. [11])
would be required to fully clarify this issue, we consider it
highly implausible that such stimulated growth of excita-
tions would be allowed by the second law of thermody-
namics. In fact, in a hydrodynamical interpretation, the
proliferation of high-energy collective excitations of the
substratum would correspond to a net decrease of the total
entropy of the system. We hence expect that in a full-
fledged EFT derivation of the hydrodynamics, the coef-
ficients ruling dissipative effects will always come with
appropriate signs so as to avoid amplification.
Fortunately, the choice of the sign of the coefficient ν4 is

not very relevant for casting a constraint, as in any case,
fluxes from well known astrophysical objects such as the
Crab nebula would be unacceptably modified by either
energy loss or gain. (Note that while, in principle, a
cancellation of the effects induced by the ν2 and a negative
ν4 could accidentally happen at some energy, their different
energy dependence implies that the two contributions
cannot erase each other at all energies.) Similarly to what
we did in Eq. (5), we can study a dispersion relation
ω2 ¼ c2k2 � ijσ4jc2k5=M3

Pl, where σ4 ≡ ð4ν4M3
PlÞ=3c,

leading to a energy loss-gain rate Γ4 ¼ jσ4j=2k4=M3
Pl.

Again, the absence of energy-dependent energy loss-gain
effects during the propagation of very high-energy photons
from the Crab nebula implies a limit σ4 ≲ 300, while
considering the spectrum of Mkn 501 yields a constraint
σ4 ≲ 0.5. Hence, already at the next order of dissipation,
the strength of the constraints is greatly reduced.
Conclusions.—While dispersive Lorentz breaking

effects have been widely studied in the past, basically no
constraints have been cast so far on departures from exact
Lorentz invariance due to high-energy dissipative effects.
In this Letter, we carried out the first systematic discussion
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of such dissipative terms, adopting hydrodynamics as a
very general framework within which the emergence of a
classical spacetime below the Planck energy could be
described. The bounds we obtained at the lowest order
(what one might call the spacetime viscosity) are indeed
extremely tight, pushing the scale for such dissipative
effects well beyond the Planck scale by several orders of
magnitude.
Unfortunately, it is not possible, missing a detailed

microscopic understanding about the origin of the dissi-
pative dispersion relation (5), to link this constraint to some
physical property of the underlying theory. Once quantum
gravity scenarios will be able to fully describe the emer-
gence of spacetime (and of matter), the bounds on the so-
derived hydrodynamic coefficients will tell us more about
the theory. Nonetheless, the very tight constraints here
obtained are already providing the very important infor-
mation that any viable emergent spacetime scenario should
provide a hydrodynamical description of the spacetime
close to that of a superfluid.
Finally, it is worth stressing that higher-order dissipative

terms can and, in principle, should be considered. For
example, nothing forbids such terms in superfluids (which
have zero viscosity) to be nonzero. Similarly, if some
fundamental, custodial, symmetry of the underlying,
quantum gravitational system would forbid the above-
mentioned “spacetime viscosity” term, one could still
expect nonzero dispersive Oðk4Þ and dissipative Oðk5Þ
terms to appear. These are sufficiently high-energy modi-
fications for which we do have relatively weak constraints
on dispersion and basically, as shown above, no constraints
on dissipation. We think that such dispersive-dissipative
relations deserve further exploration and we hope that the
study presented here can be of some stimulus for such
further investigations in the near future.
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