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We propose and analyze a new approach based on quantum error correction (QEC) to improve quantum
metrology in the presence of noise. We identify the conditions under which QEC allows one to improve the
signal-to-noise ratio in quantum-limited measurements, and we demonstrate that it enables, in certain
situations, Heisenberg-limited sensitivity. We discuss specific applications to nanoscale sensing using
nitrogen-vacancy centers in diamond in which QEC can significantly improve the measurement sensitivity
and bandwidth under realistic experimental conditions.
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The precise measurement of physical quantities is of great
importance in science. Quantum metrology [1,2] provides
an efficient framework for understanding the fundamental
limits of the achievable accuracy in the determination of a
parameter (e.g., a magnetic field or frequency), given a
certain amount of resources (e.g., number of available atoms
or time). In recent years, the exploration of these limits in
the presence of realistic imperfections and noise have been
actively pursued [3–7]. A typical quantum measurement
(e.g., the Ramsey method [8]) involves a sequence of
measurement cycles of duration T within the total available
time τ. Since each cycle introduces measurement noise, it is
beneficial to extend T to its maximum value T → τ.
However, in the presence of qubit noise of rate γ, the
interrogation time T is inherently limited, since for times
T ≥ 1=γ the phase information acquired during the inter-
rogation is lost [3]. One technique to counter environmental
noise in metrology is dynamical decoupling (DD) [9–16].
Here, a series of control pulses (or continuous wave control
fields) effectively achieves a cancellation of the coupling
Hamiltonian between the system (i.e., qubit) and its
environment to a certain order, thus, effectively reducing
the value of γ [17]. However, in order to achieve sensitivity
improvements, the pulse repetition rate of a DD protocol
(which has to match the frequency of the measured signal)
needs to be faster than the correlation time of the environ-
mental bath τc. Therefore, for environments with fast
internal dynamics, DD is not feasible.
In this Letter, we propose a complementary approach

that employs quantum error correction (QEC) [18–20] for
metrology. In contrast to DD, the QEC operations have to
be implemented on time scales of the noise rate γ. Our
approach is independent of the correlation time of the bath,
and it is capable of correcting noise even in the Markovian
limit (τc → 0). A direct application is to nanoscale mea-
surements of magnetic and electric fields using nitrogen
vacancy (NV) centers in diamond. We show that, in such

measurements, significant improvements in sensitivity and
detector bandwidth can be obtained. Our approach can be
understood as a sequential feedback protocol. When
applied to ensembles of N qubits, it can yield, in certain
situations, Heisenberg-limited scaling (∝ 1=N) of the
measurement uncertainty. In the example we consider, this
allows us to surpass the precision bound derived in [7]. This
illustrates that the recently developed methods to derive
precision bounds in the presence of noise [5,6] (which were
used in [7]) have to be applied with care, as for certain noise
models, these bounds may be surpassed using sequential
feedback [21].
QEC is based on the fact that any kind of noise, discrete or

continuous, can be represented by a discrete set of error
operation elements fE0;…; Ewg. It is then possible—
through the use of redundant degrees of freedom (provided,
e.g., by ancilla qubits)—to encode the logical information in
a subspace C (the so called quantum code) of the Hilbert
space H such that each of the errors Ei maps the code to a
respective orthogonal and undeformed subspace Ei, allowing
us to detect and correct errors that have occurred. Consider a
state that evolves within the code space C under the action of
the HamiltonianH generating the signal we aim to measure:
e−iHtjΨi ¼ jΨϕðtÞi ∈ C for jΨi ∈ C [ϕðtÞ denotes, e.g., the
accumulated phase]. If an errorEi occurs, the state is mapped
to EijΨϕðtÞi ¼ jηϕðtÞi ∈ Ei. In the simplest case, the spaces
Ei and C are orthogonal, andwe are able to reliably detect this
error by measurement of the projector on Ei (the so-called
syndrome operator). Evidently, this is not always possible,
e.g., in the case where the generator of the signal is propor-
tional to the error operation element H ∝ Ei, and any
conceivable QEC code will also “correct” the signal. In
what follows, we derive a general set of conditions under
which QEC can be employed to improve metrology.
General Formalism.—Let us assume we have N detector

qubits to measure the parameter ω (e.g., a magnetic or
electric field) of a Hamiltonian
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Hs ¼
ω

2
G; (1)

where G, in general, can be any sum of single- or multiqubit
operators. During the evolution, the qubits are subject to
some arbitrary form of noise which is described by the
quantum operation [20]

EðρÞ ¼
X

k

EkρE
†
k: (2)

If we further denoteMρ ¼ e−iHtρeiHt, the goal of QEC for
metrology is to design a recovery operation R, such that

ðR∘ E ∘MÞðρÞ ∝ Mρ; (3)

for all states within a certain quantum code ρ ∈ C ≤ H.
Note, that Eq. (3) has to be understood in the short-time
limit where E ∘M ≈M∘ E; i.e., recovery operations have
to be applied on time scales short compared to the noise
rate γ. Defining P as the projector on the code space C, the
recovery operation R exists if and only if the two
conditions (i) ½G; P� ¼ 0, (ii) PE†

i EjP ¼ Ai;jP, are fulfilled,
with A ¼ ðAi;jÞ being a hermitian matrix. Condition (ii)
guarantees that the error operation elements Ei map the
code space onto orthogonal and undeformed subspaces.
One can show in a constructive proof [20] that this implies
the existence of anR fulfilling Eq. (3) ∀Mρ ∈ C. Because
of condition (i), C is an invariant subspace of G, such that
MðρÞ ∈ C, ∀ρ ∈ C, proving the existence of R as defined
in Eq. (3).
However, these conditions alone also allow for

solutions in which the generator G acts as the identity
on the code. Obviously, such a code is useless for
metrology, since the action of the Hamiltonian yields a
global phase on the code states. To exclude these
trivial solutions, we further require the maximum
quantum Fisher information [22] within the code space
to be larger than zero (iii) ξ≡maxjΨi∈ChΔG2iΨ > 0, where
hΔG2iΨ ¼ hΨjG2jΨi − hΨjGjΨi2. Since the achievable
precision in a noise-free measurement of ω is δω ∝
1=

ffiffiffi
ξ

p
[2], ξ also serves as a figure of merit which quantifies

how useful a particular code C is for metrology.
Example.—Consider the model system of a single qubit

subject to phase noise (pure dephasing) sensing a signal in
x direction described by the Hamiltonian

Hs ¼
ω

2
X1; (4)

where X1 is the x Pauli operator (Z1 and Y1 denote the
remaining Pauli matrices). Phase noise is described by the
operation elements E0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
1, E1 ¼ ffiffiffiffi

p
p

Z1, where p
is the error probability. Using standard Ramsey spectros-
copy, the qubit interrogates the parameter for the Ramsey
time T, and after n repetitions we can determine the value
of ω with accuracy [23]

δω ≈
1

T
ffiffiffi
n

p ¼ 1ffiffiffiffiffiffi
Tτ

p ; (5)

where we defined the total measurement time τ ¼ nT. In
the presence of noise, the maximal Ramsey time is limited,
T ≤ 1=γ (⇔p ¼ γT ≤ 1), resulting in the suboptimal
measurement accuracy

δω ≥
ffiffiffi
γ

τ

r
: (6)

Now, let us assume we have an ancilla at our disposal
which neither interacts with the parameter nor is subject to
noise. By defining the simple code spanned by the two
states j1i≡ j þ þi and j0i≡ j − −i [where � in the first
(second) slot represents X eigenstates of the single detector
(ancilla) qubit], one readily checks that, ½Hs; P� ¼ 0, ξ ¼ 2,
and A ¼ diagð1 − p; pÞ; i.e., the requirements for QEC are
met. To perform the measurement, we initialize the system
in the state jΨi ¼ ðj þ þi þ j − −iÞ= ffiffiffi

2
p

∈ C. Under
the action of the Hamiltonian, the state accumulates a
phase ϕ ¼ ωt: jΨðtÞi ∝ ðj þ þi þ e−iϕj − −iÞ= ffiffiffi

2
p

. If a Z
error occurs the state is mapped to jΨðtÞi ∝
ðj −þi þ e−iϕj þ −iÞ= ffiffiffi

2
p

, such that the subsequent evo-
lution reduces the phase, rather than increasing it, resulting
in a randomized signal for T ≥ γ−1.
To implement QEC, we divide the Ramsey time T into r

intervals of equal duration α ¼ T=r, and perform a QEC
step R after each segment (R is assumed to be instanta-
neous on time scales of the evolution), as illustrated in
Fig. 1. The QEC operation R consists of two steps:
(1) Measuring the syndrome operator X1X2 (with X2 acting
on the ancilla spin). (2) For outcome −1: Application of a
Z1 gate. For outcome þ1: No action is required. Although

FIG. 1. Circuit model of the QEC for the model described by Eq. (4). The code state is prepared by application of a Hadamard (H) and
CNOT gate. After each segment of free evolution of duration α ¼ T=r, the QEC operation R is applied. After the final decoding and
measurement (D), the effective error rate has been reduced by a factor T=α.
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single errors within a segment α can be corrected with the
operation R (assuming perfect gates), they introduce a
small phase uncertainty, due to the fact that the exact time
of the error within the interval α is unknown. Despite this
small residual uncertainty, we demonstrate in [24] that, by
performing r QEC steps, we can extend the Ramsey time
linearly to a value T → rγ−1, if α ≪ γ−1. Consequently,
after r ≈ γτ−1 repetitions, we can extend the interrogation
time to its maximum value T → τ, and achieve the best
sensitivity allowed by quantum mechanics

δω ≈ 1=τ: (7)

This result is confirmed by numerical simulations displayed
in Fig. 2. Even for relatively low repetition rates of the
recovery operations, αγ ¼ 1, the linear, noise-free scaling is
recovered. For imperfect recovery operations (failing with
probability perror ¼ 10−3), and residual parallel noise com-
ponents (γ∥ ¼ 10−3γ), a significant constant improvement
is found.
Quantum metrology in the presence of perpendicular

noise as described by Eq. (4) has been investigated in [7]
for the case of multiparticle measurements. There, using the
methods introduced in [5,6], a general precision bound is
derived, yielding an optimal asymptotic scaling of the
sensitivity δω ∝ 1=ðN5=6 ffiffiffi

τ
p Þ. While this result represents a

scaling better than the standard quantum limit (i.e.,
∝ 1=

ffiffiffiffi
N

p
), it can further be improved by allowing for

sequential feedback protocols, as represented by the QEC-
based method we now suggest. Being provided with N
detector spins we define the code j1i≡ jþi⊗N and j0i≡
j−i⊗N (note that here no ancilla is needed). Assuming

independent Z noise acting on the individual detector spins,
the error operation elements are given as E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Np

p
1,

and Ei ¼ pZi (i ¼ 1…N), where we neglect operation
elements of order Oðp2Þ or higher. Again, one readily
checks that all requirements for QEC are fulfilled
with ξ ¼ ð2NÞ2, indicating the potential for Heisenberg-
limited spectroscopy. We prepare the system in
jΨi ¼ ðjþi⊗N þ j−i⊗NÞ= ffiffiffi

2
p

∈ C, which accumulates the
phase Φ N times faster than uncorrelated qubits. In this
situation, a single error Zi can be detected by measuring the
syndrome operators Xi−1Xi and XiXiþ1, and corrected by
an appropriate π rotation. A single QEC operation R
consequently involves N − 1 syndrome measurements of
the operators XiXi þ 1 (i ¼ 1…N − 1). As above, repeti-
tive application of R allows us to extend the Ramsey time
to the maximum value T → τ, achieving, in principle, the
Heisenberg limit of metrology [2] δω ≈ 1=ðNτÞ with an
optimal scaling in both resources time τ and particle
number N [25].
These considerations demonstrate that, under certain

conditions, QEC (and possibly other sequential feedback
protocols) provides a way to surpass sensitivity bounds
derived using the methods introduced in [5,6]. While these
works include the possibility of feedback at the measure-
ment stage they do not allow for feedback in a sequential
fashion as suggested here. In contrast, the effects of
sequential feedback have been considered in [4], where
it was concluded that no improvement beyond the standard
quantum limit can be found if the channel associated with
the system evolution between two feedback operations is
of full rank. However, this result does not contradict our
findings, as, in our protocol, the QEC operation is
employed explicitly in the short-time limit, where the
channel associated with the particular noise model we
consider is of less than full rank.
Applications.—QEC has recently been demonstrated

experimentally in various different physical systems, such
as trapped ions [26], superconducting qubits [27], and NV
defect centers in diamond [28,29]. In the following, we
consider an example from solid state nanosensing using
NV centers in which our approach can be applied under
realistic experimental conditions. Recent work [30] has
suggested and experimentally demonstrated the use of NV
centers for the sensing of electric fields with high sensi-
tivity and spatial resolution, e.g., for the biological imaging
of neural activity [31–35]. NV centers are optically
addressable diamond lattice defects with a stable para-
magnetic ground state of spin S ¼ 1 [36]. In zero magnetic
field, the spin state j0i is separated from the degenerate
states j1i and j − 1i by a splitting of ω0 ∼ 2π × 3 GHz.
Electric fields perpendicular to the NV symmetry axis lift
the remaining degeneracy by coupling the states j1i and
j − 1i at a strength d⊥ ¼ 17 Hz cmV−1. Identifying j1i and
j − 1i as the qubit states ðX1 ¼ j − 1ih1j þ j1ih−1jÞ, this
enables the measurement of a dc or ac electric field using

FIG. 2 (color online). Normalized estimation error δω
ffiffiffi
τ

p
for

the model of transversal noise (see text), for sufficiently large τ. In
the standard approach (dashed-dotted line) the interrogation time
has an optimal value T ≈ γ−1, limiting the achievable sensitivity.
Ideally, QEC (solid line) can restore the noise-free scaling
(dashed line) (∝ 1=

ffiffiffiffi
T

p
) even for relatively small QEC repetition

rates 1=α ¼ γ. The dotted lines show the achievable sensitivity in
the presence of a small parallel noise component γ∥ ¼ 10−3γ, and
a probability perror ¼ 10−3 that the QEC operation fails.
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standard Ramsey spectroscopy. In the case of ac measure-
ments, a constant magnetic field has to be applied to bring
the j1i↔j − 1i transition in resonance with the electric field
frequency. Because of the large zero-field splitting, x and y
magnetic noise is highly suppressed [by a factor ðω0τcÞ2],
and the dominant noise contribution limiting the sensitivity
is provided by magnetic field fluctuations in z direction,
accounting for pure dephasing of the qubit states.
Furthermore, generically, the NV electron spin is hyper-
fine-coupled to the nuclear spin of the constituting nitrogen
atom (whose coherence times are well beyond those of the
NV center [11]), enabling coherent two-qubit operations
[37]. Other nearby nuclear species (13C) have recently been
used to implement a QEC protocol [28,29].
For the simple QEC code we consider, the QEC

operation R using the 15N nuclear spin as the ancilla
can be done on the time scale of a few microseconds,
without performing a full measurement and feedback loop,
as described in [24]. This, in principle, allows extending the
Ramsey time to the NV center population relaxation time
T → T1. Specifically, let us consider the case of dc or low
frequency field sensing, relevant, e.g., in the biological
imaging of neural activity [31–33]. In this case, DD cannot
be used to improve the spin coherence time, and, generi-
cally, the interrogation time is limited by T�

2 ≈ 1–100 μs.
Since, depending on the operational conditions, T1 ranges
from 10 ms up to 1 s, our QEC approach could potentially
improve the sensitivity by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T1=T�

2

p ¼ 10–103.
In the case of ac metrology, standard sensing experiments
that use DD techniques such as Hahn echo or Carr-Purcell-
Meiboom-Gill sequence can achieve a suppression of the
noise by a factor ðΔt=τcÞ2 [17], where Δt denotes the
duration of a single decoupling sequence. Under typical
experimental conditions, this results in an effective coher-
ence time of the order of 10 μs–1 ms ≪ T1 (for shallow
NV centers). In such experiments [30], QEC can still
improve sensitivity by a factor of 3 to 300, reaching values
of the order of 1–10 Vcm−1Hz−1=2 for a single NV.
A second application of the QEC protocol involves ac

magnetometry with NV centers. In contrast to the conven-
tional approach employing decoupling or double resonance
techniques [38], we consider a scheme in which we tune the
transition frequency between the j0i and j1i sublevels of
the NV center ground state into resonance with the target ac
field by applying an external magnetic field. As before, the
use of a simple QEC protocol enhances the qubit coherence
ideally to a value ∼T1. As shown in [24], similar to the
above case, this approach can improve the sensitivity by a
factor of 10 to 103, and allows us to expand the operational
frequency range to several GHz. For applications requiring
the use of diamond nanocrystals, the improvement could, in
principle, be markedly higher due to the lower initial spin
coherence times. The above considerations include the
possibility of bulk magnetic and electric sensing with a
macroscopic number of uncorrelated NV center spin

detectors in a sample, since the QEC operation does not
require individual addressing or measurement of different
detector spins.
In summary, we have presented a QEC-based approach

to enhance the sensing accuracy in quantum metrology in
the presence of noise. We demonstrated that our technique
can improve the sensitivity of nanoscale magnetic and
electric field sensors under realistic experimental condi-
tions. Identifying further relevant physical situations
in which QEC can be employed to improve sensing—
possibly by using more involved codes based on multiple
qubits or multilevel systems—remains an interesting task.
In particular, the combination of the complementary
techniques of QEC and DD in sensing protocols appears
to be a promising path with potential applications in a large
variety of fields [9,12,13,38]. From a theoretical perspec-
tive, our approach demonstrates that sequential feedback
protocols can, in certain situations (e.g., [7]), surpass the
sensitivity bounds derived with the methods of [5,6]. While
the conditions we derived for perfect noise cancellation
with QEC are restrictive, and applicable only to specific
models, it remains an interesting question whether
more general feedback protocols can be applied to more
generic scenarios, possibly at the cost of imperfect noise
suppression.
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