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The signal to noise ratio of quantum sensing protocols scales with the square root of the coherence time.
Thus, increasing this time is a key goal in the field. By utilizing quantum error correction, we present a
novel way of prolonging such coherence times beyond the fundamental limits of current techniques. We
develop an implementable sensing protocol that incorporates error correction, and discuss the character-
istics of these protocols in different noise and measurement scenarios. We examine the use of entangled
versue untangled states, and error correction’s reach of the Heisenberg limit. The effects of error correction
on coherence times are calculated and we show that measurement precision can be enhanced for both
one-directional and general noise.
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Quantum sensing and metrology [1] are key goals of
quantum technologies. Impressive achievements have been
made in both fields in recent years. The frequency uncer-
tainty of atomic clocks has decreased dramatically [2,3],
the signal to noise ratio of magnetic field measurements
has considerably increased [4–8], and the contrast of spin
imaging has improved [9,10]. Since the sensitivity of
quantum sensing scales as 1ffiffiffiffi

T2

p , where T2 is the coherence

time [11], a great deal of effort has been devoted to the design
and realization of protocols that increase this timewhile also
maintaining the sensing signal. The utilization of error cor-
rection (EC) for quantum sensing objectives could increase
the coherence time substantially, and thus, enhance the
sensitivity of field measurement and the contrast of imaging.
State of the art methods of noise reduction by dynamical

decoupling (DD) face three main challenges [12,13], for
which EC could significantly enhance precision: (1) when
the correlation time of the noise, denoted tc, is very short
(e.g., white noise), DD and similar methods fail, since they
have to be faster than tc (This limitation can be overcome
by EC, since it only needs to be faster than the noise effects,
which are typically much slower.); (2) when there is noise
in the control, in which DD requires special pulse sequen-
ces that constitute obstacles in various scenarios; (3) in the
case of T1 noise and noise in all three directions.
EC tackles high frequency noise by using redundant

qubits. An EC scheme is composed of a code subspace
fjψ1;ψ2;…ψNig, in which all the pertinent information is
found; i.e., the sensing signal should work inside the code
(e.g., Hs ¼ gjψ iihψ jj þ H:c:, where g is the signal). The
code is susceptible to errors, which map it to orthogonal
subspaces. Correction of the errors is accomplished by
means of projective measurements, i.e., projecting the state
onto one of the orthogonal subspaces, and then applying a
correction sequence [14,15]. The basic idea is shown in
Fig. 1. In the past few decades, following Shor’s work [16],
various EC protocols have been proposed (including

Stean’s code [17]), and various fault tolerant methods
[15] have been put forward. Recently, several protocols
have been implemented [18,19].
There are three main differences between using EC for

quantum computing and using EC for sensing purposes.
While a logic operation can be done by arbitrary pulses
connecting different code states which were chosen solely to
facilitate EC, the sensing signal usually has simple form
(generally, it operates on eachqubit separately),which largely
constrains the code states that can be chosen, since the signal
has to operate inside the code. Moreover, logic operations
can be realized by fast pulses, which allow for the design of
complicatedHamiltonians by controlling the pulse sequence,
but the sensing signal for most scenarios is weak and
continuous, which is an obstacle to using this technique
effectively. These two differences complicate the problem.
However, EC mechanisms for sensing can benefit from

the use of fully protected qubits, which are not sensitive to
either noise or signal and help simplify the EC schemes. We

FIG. 1 (color online). Thebasicmechanismof thecombinationof
EC with sensing. Errors map the code subspace to orthogonal
subspaces, and are followed by an EC sequence, composed of a
detection and then a correction, that brings the state back to the code.
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denote these as “good” qubits, as compared to those that are
“sensitive” to the signal and noise. These good qubits can be
produced by clock states or robust nuclear spins. There is no
analog for this in the case of quantumcomputing since in that
case we use, by design, the most robust qubits available.
Improving dynamical decouplingwith error correction.—

We now consider a representative sensing model and ass-
ume that, in this setup,DDfails to prolong the coherence time
due to noisy control parameters or due to fast noise corre-
lations. Wewill present a combined DD and error-correction
procedure aimed at extending the model’s coherence time
and analyze the limits in which this procedure is efficient.
The model we examine is composed of a single two level

system (TLS), spanned by the basis states j↑i and j↓i,
which are chosen to be the eigenstates of σz, and are
separated by an energy gap ω0. The coupling of the sensing
signal g, which wewant to measure, to the TLS is described
by the Hamiltonian

H ¼
�
ω0

2
þ fðtÞ

�
σz þ ½Ωþ δΩðtÞ�σx cosðω0tÞ

þ gσz cosðΩtÞ: (1)

Here fðtÞ and δΩ represent the slow external and fast
control noise, respectively, and σk is the Pauli operator in
the kth direction. This Hamiltonian represents the main
magnetometery scenario which has been realized in nitro-
gen vacancy (NV) centers [4,7], ions [8], and atoms [20].
We transform H first to the interaction picture with respect
to ω0σz=2 and then to the interaction picture with respect to
Ωσx, taking advantage of the rotating-wave approximation
when possible. Assuming that fðtÞ ≪ Ω ≪ ω0 and since f
is slow, the σz noise [fðtÞ] can be neglected (this is the DD).
We are left with the Hamiltonian: HI ¼ g

2
σz þ δΩσx.

In addition, we assume that we have a good qubit
fj0i; j1ig, that can be controlled at will. In NV centers, this
may be realized by the 13C, which has a much longer cohe-
rence time than that of the electron. We define the code as

fj↓; 0i; j↑; 1ig; (2)

the signal g inflicts a phase shift between the two states,
which can be measured as follows: assuming that, at time
t ¼ 0, we have initialized the state at

jψð0Þi ¼ 1ffiffiffi
2

p j↓; 0i þ 1ffiffiffi
2

p j↑; 1i; (3)

the probability of measuring the same state at time t will be
proportional to cos2ðgtÞ [11], allowing for the extraction of g.
The effect of the noise δΩ·σ1x operation is a flip of the first
TLS state (e.g., the NV electron), which maps the system
onto the error states

fj↑; 0i; j↓; 1ig: (4)

The rate at which such a bit flip occurs (denoted ΓδΩ) is
governed by the magnitude of δΩ regardless of its correla-
tion time.

The proposed EC procedure then closely follows the
three-qubit code of quantum computing: the measurement
of the σ1zσ

2
z spin correlation operator detects whether an

error has occurred [eigenvalue of (−1)] or not (eigenvalue
of 1). In the case where an error was detected, we correct it
by operating with σ1x, thus, mapping the system back onto
the code subspace. A similar effect can also be achieved
without measurement by application of appropriate logical
gates. This procedure can be realized in NV centers by
applying the gates between the NV electrons and the 13C
[19,21], and relying on the ability to efficiently polarize the
electrons and read their state, or it can be implemented in
ion chains by exploiting clock transitions. Assuming that a
CNOT gate is available between the good and the sensing
qubits, the procedure may be implemented by first applying
this gate, mapping the code states on to fj↓; 0i; j↓; 1ig
and the error states on to fj↑; 0i; j↑; 1ig. Following this,
by polarizing the sensing qubit back to the down state and
applying the CNOT gate again, the EC procedure can be
completed without measuring the system [22].
To understand the effect of the noise, we view the noise

as inducing bit flips at random times. Since the sensing
signal is continuously rotating the code states and the
corresponding error states in opposite directions, we get a
phase difference depending on the time of the flip; thus, we
get phase change proportional to ei2gðτ−terrÞ (where τ is the
time interval between EC sequences). On average, terr ¼
τ=2 since the noise is self homogeneous in time we simply
get a delay of length τ in the measurement each time we
detect an error. This delay cannot be corrected but can be
accounted for since we know the exact number of detected
errors during each run. On the other hand, terms propor-
tional to the standard deviation of terr cannot be accounted
for, and will cause decoherence proportional to ΓδΩg2τ3.
To understand this effect better, note that the noise and

the signal do not commute, and thus, the signal g rotates the
noise term and effectively generates noise in all directions
(as terms proportional to σy and σz appear in the time
propagation). This noise is not correctable by the proposed
protocol as can be seen from the master equation of the
system. Transforming HI to the interaction picture with
respect to g, we get HII ¼ δΩðtÞ½cosðgtÞσx þ sinðgtÞσy�.
Looking at the correlation term of the two error states
j↑0iρerr↑0;↓1h↓1j, we see that the first order in g, ΓδΩ we have
the master equation _ρ↑0;↓1ðtÞ ¼ 2ΓδΩð1 − igτÞρ↑1;↓0ðtÞ.
Applying EC, we measure the error with probability
ΓδΩτ. After normalization of the state, and correcting as
described above, we have ρ1↑1;↓0 ≃ ð1 − igτÞ=2 which
corresponds to an almost pure state. This correlation shows
a phase change proportional to gτ that cannot be corrected
but can be accounted for as mentioned above. Decoherence
(Dec) appears in the second order as Dec¼ 1=2− jρ1↑1;↓0j≃
−g2τ2=12. The entire derivation is valid when single-flip
errors are dominant, that is, ΓδΩτ ≪ 1.
After n errors, the decoherence behaves as

Dec ∝ 1 − ð1 − g2τ2Þn ≃ g2τ2n. We define the coherence
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time T2 as the typical time after which decoherence reaches
an order of unity, and use hni ¼ ΓδΩt to obtain

T2 ¼ ðgτÞ−2Γ−1
δΩ ½ΓδΩτ ≪ 1; gτ ≪ 1�: (5)

In brackets are quoted the EC efficiency (and, also, deriva-
tion validity) conditions. For more details, see Sec. 5 of the
Supplemental Material [22]. For slow noise of correlation
time η0, there are additional contributions proportional to
ðgη0Þ−1, which do not appear for fast noise because of
destructive interference. Numerical simulations with very
fast noise, as presented in Fig. 2, have shown that such errors
are correctable as long as the stated condition is fulfilled.
Despite the minimal nature of the Hamiltonian in Eq. (1),

the EC procedure described here is suitable for dealing
with a wide range of sensing setups susceptible to noise.
Of particular interest is the measurement of an interaction
between two TLSs, described by gσ1xσ2x. The generalization
of the EC procedure we just described to the case of two
TLSs, thus coupled, where we allow for local operations
only, is straightforward by defining the code sub-
space f½j↓1; 0;↑2; 1i − j↑1; 0;↓2; 1i�=

ffiffiffi
2

p
, ½j↓1; 1;↑2; 0iþ

j↑1; 1;↓2; 0i�=
ffiffiffi
2

p g, and then identifying a z-directional
noise as effective spin flips [22].
Collective enhancement.—Measurements made with N

entangled qubits are of particular importance, since it was
shown that, in a noiseless system, these can surpass the
untangled system’s precision by a factor of

ffiffiffiffi
N

p
, reaching

the Heisenberg limit [23,24]. However, it was also shown
that when parallel noise is present, the best achievable
enhancement in precision is by a constant (numerical)
factor achieved for asymptotically large N [11,25,26]. In
the presence of orthogonal noise, the use of entanglement
may improve the precision by a parametric factor of N1=3

[27]. This makes an interesting goal for EC to overcome the
noise of such entangled systems.
We suggest a simple setup for such ameasurement usingN

sensitive qubits, and only one good qubit. It should be
stressed that for untangled systems with N sensitive qubits
we need at least N good qubits. The code states will be
j1Ni ¼ j↑1…↑N ; 1i, j0Ni ¼ j↓1…↓N ; 0i, where the num-
ber after the “;” is the state of the good qubit. The
Hamiltonian here will be H ¼ g

P
N
i¼1 σ

i
z þ

P
N
i¼1 ξiðtÞσix−

gON , where g is the signal,ON is an interaction part, and ξiðtÞ
are orthogonal noise terms which scale like Γ [e.g., for white
uncorrelated noise, we have hξjðtÞξlðt0Þi ¼ δjlδðt − t0ÞΓ=2].
The measurement procedure will follow a Ramsey meas-
urement, the system will be initiated into the GHZ state
ðj1Ni þ j0NiÞ= ffiffiffi

2
p

, and then evolve under H for time t.
It can be shown that, for certain nonvanishing ON , the

Heisenberg limit can be reached [22] as shown in the
Supplemental Material Sec. 2.1. But the required inter-
actions for such enhancement are specific and restrictive,
and do not naturally occur in experiments. Indeed, these
interactions can be generated by means of virtual transi-
tions, but those are problematic, as will be shown towards
the end of this Letter (an iteration based version that
avoids this problem is also presented in the Supplemental
Material Sec. 2.3).
We now turn to the ON ¼ 0 case. In this case, the errors

are bit-flip errors, and because the good qubit never flips,
we can correct any number of subsequent flips by the same
EC sequence as in the last section, only here we measure N
two-spin-correlation operators fσiσNþ1gNi¼1. The corre-
sponding increase in the coherence time is limited by
the mixing rate of the noise by the signal, from which we
can derive the equivalent of Eq. (5) [22]

T2 ¼
T�
2

ðg · τÞ2 ¼
T�SQL
2

Nðg · τÞ2 ≫ T�
2;

�
for τΓ ≪

1

N

�
; (6)

where T�
2 is the coherence time without EC, and SQL

denotes a single qubit system (unlike our entangled
system). As can be seen, the noise in the entangled system
works on all the qubits at once, causing a faster deco-
herence, and thus, T�

2 ¼ ðNΓÞ−1 ¼ T�SQL
2 =N. The condi-

tion on τ is the condition that single-flip errors are dominant
over multiple-flip errors; note that this condition means we
have to go to very short measurements times as N grows.
The effective time delay here is τ

N for a single-flip error, and
2τ
N for a double-flip and so forth. This is a rather small effect.
Finally, we compare the entangled protocol precision,

δgent, to that of the untangled (SQL) protocol when using
EC, δgSQL. Notice that the measured frequency of the
entangled protocol is ω ¼ Ng whereas for the untangled

FIG. 2 (color online). The fidelity of a state as a function of
time, for different time differences between EC operations. Here,
each point represents an average over N ¼ 1024 simulations, and
the fidelity of the system is plotted for run times that are integer
multiplications of 2π=g. In each run, either no EC procedure was
applied (green), an EC procedure was applied each time interval
of gτ ¼ 0.5 (red) or gτ ¼ 0.2 (blue). In each case, the range of the
randomly chosen noise was (−g=2, g=2). Inset: The probability of
measuring the initial state of the system, as a function of time.
Here, the black line represents the case with no noise, and the
different lines show the cases where no EC was made (green), or
where an EC was made at intervals of gτ ¼ 0.5 (red) and gτ ¼ 0.2
(blue). Here, we considered a stronger noise chosen randomly
within the range of (−2g, 2g).
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protocol the frequency is simply g, but the measurement is
conducted on N systems in parallel. The precision of the
measurement goes as δω ∝ ðntT2Þ−1=2, where t is the total
time and n is the number of parallel systems [11]. Plugging
in Eq. (6), we get

δgent ¼
N−1ffiffiffiffiffiffiffiffiffi
1tT2

p ¼ 1

N
gτ

ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tT�SQL

2

q ¼ gτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NtT�SQL

2

q ¼ δgSQL: (7)

There is no improvement over the untangled EC procedure;
thus, we do not achieve a super-classical precision in this
naive approach. However, these results can be improved
by using nonzero interaction terms, as mentioned earlier.
Furthermore, the bounds on precision [26], mentioned ear-
lier, become trivial for parallel noise and short evolution
times and, thus, do not apply to our system when working in
the limitΓτ ≪ 1=N. Hence, it is plausible that super-classical
precision can be attained by use of more sophisticated
EC protocols, even without interactions. Nevertheless, our
system does achieve a substantial improvement over the
no-EC case (by factor gτ ≪ 1), under the EC efficiency
condition in Eq. (6).
Turning our attention to the correction of noise inmultiple

directions, we apparently need to change our code to
something of the form j↑x1…↑xN ; 1i; j↓x1…↓xN ; 0i, where
j↑xi ¼ ðj↑; 1i þ j↓; 0iÞ= ffiffiffi

2
p

is a state composed of one
good qubit and one sensitive qubit, so the above-mentioned
efficiency advantage over the untangled case is lost. Note,
once again, the need for two body interactions proportional
to the signal. The problem with such interactions, as well as
ways to circumvent it, are presented below.
Multidirectional noise, T1, and interaction terms.—We

move to correcting noise in all directions (general errors),
and T1 related errors. As a model for T1 errors, we take
decay errors, and note that the decay of different qubits is
usually not coherent; hence, different decays should bring
the state into orthogonal subspaces. These error types are
relatively hard to correct.
To enable correction of these kinds of noise, the code

states must differ by the state of many qubits. However, the
measured field will, in general, only connect states that are
relatively “close” (i.e., similar), typically changing the state
of only one sensitive qubit at a time and, thus, cannot
connect the distant code states. This means that to measure
the field we have to connect the code states by a virtual
passage through a state outside the code (e.g., by Raman
transition). Because this state is outside the code, errors on
it will not be correctable.
It is important to note that many ways of generating

“effective multiqubit Hamiltonians” work by similar meth-
ods, andthus,ourdescriptionhereapplies to thoseaswell [28].
Assume a three qubit code where the first qubit is a

sensitive qubit with limited T1 time; in other words, it is
susceptible to decay—whereas the other two are good qubits.
The Hamiltonian of the decay is Hd ¼ γða†σ1− þ aσ1þÞ,

where a is the annihilation operator of an environment
photon mode, matching the decay of the qubit from the
j↑i state to the j↓i state.We assume that the photonicmode is
unoccupied to begin with, and also, that photons travel away
from the system very rapidly after their creation; under these
conditions, we are left with the decay operator Hd ∝ γðσ1−Þ.
The sensing Hamiltonian is H ¼ gσ1z , where g is the

signal, and the proposed code is jAi ¼ j↓0þ ↑1ij0i;
jCi ¼ j↓0 − ↑1ij1i. Let us look at the following pro-
cedure: by opening a gap between the code state and a
utility state jBi ¼ j↓0 − ↑1ij0i and adding a laser, we can
generate the interaction picture Hamiltonian

H ¼ gjBihAj þΩjBihCj þ H:c:þ δjBihBj: (8)

When Ω, g ≪ δ, this is a Raman transition mediating the
sensingsignalbetween thecodestates through theutilitystate.
In this scheme, the utility state is occupied by a small

amplitude proportional to ε ¼ Ω
δ ≪ 1. It can be shown that

decay errors on the first bit are correctable, yielding a

prolonged coherence time T2 ¼ T�
1

ε2
. But it can also be

shown that, due to the reduced frequency, the precision of
the measurement undergoes a reduction by a factor of ε,
yielding a total of no benefit: δgRaman ∝ 1

ε
1ffiffiffiffi
T2

p ¼ 1ffiffiffiffi
T�
1

p ∝ δg0.

This is an “approximate EC” [29] scheme, consistent
with general field measurements, that can prolong T1. This
method is metrically equivalent to the no-EC scheme, in
that it will not enhance precision in the general case, but
neither will it hinder precision. Thus, it may be useful in
certain cases in which T1 is of even greater importance.
Other schemes we checked achieve similar results,

suggesting that this might be the best achievable result
in the case of a general field with multidirectional noise. In
addition this effect restricts the “multiparticle Hamiltonian
generation methods” that may be used for sensing with EC.
Below, we show how this result can be improved if we
allow for a more specific field.
Flip flop interactions.—One scenario that overcomes this

problem involves measuring the coupling strength between
different qubits. The sensed interaction allows for a more
general sensing Hamiltonian, which enables us to connect
code states that differ by the state of more than one qubit.
The simplest of these signals is the coupling strength
between two TLSs. Below, we show how to correct general
errors when measuring two particle coupling.
More specifically we want to measure the interaction

strength between a dissipative TLS and a stable one.We ass-
ume an interaction that will induce flip flops between the two
TLSs. This interactionmodel is fairly general, and describes,
among other things, dipole-dipole interactions, sideband
interaction, and hyperfine coupling. Sideband interaction
is of special interest, because it enables measurement of Rabi
frequencies, a quality that makes it very general.
Here, we use the code: jAi ¼ ðj↑00i þ j↓11iÞ= ffiffiffi

2
p

,
jCi ¼ ðj↓10i þ j↑01iÞ= ffiffiffi

2
p

, where the first qubit is the
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sensing qubit and the other two are good qubits. The flip
flop interaction, described by the Hamiltonian Hs ¼
gðσ1þσ2− þ H:c:Þ (g is the signal), couples the two code
states directly, and thus, we do not use a utility state that lies
outside the code.
This code enables us to correct general errors on the first

qubit (i.e., any error that might occur on this bit).
Correction of general errors is equivalent to correcting
phase flips (i.e., σz π=2 pulse) and bit flips (i.e., σx π pulse).
These corrections are demonstrated below.
Beginning in some general state jψi ¼ ajAi þ cjCi, a bit

flip on the first qubit results in the state

jψEx
i ¼ a

j↓00i þ j↑11iffiffiffi
2

p þ c
j↑10i þ j↓01iffiffiffi

2
p : (9)

By measuring the spin correlations operator σ1zσ
2
z, and

applying a bit flip if the outcome is þ1, we return to the
original state and the error is corrected. Now a phase flip
occurs, resulting in the state

jψEz
i ¼ a

j↑00i − j↓11iffiffiffi
2

p þ c
−j↓10i þ j↑01iffiffiffi

2
p : (10)

We measure the appropriate operator and apply a phase flip
as needed, resulting in full correction and a return to the
original jψi state.
Here, the time delay when an error is detected is equal to

τ
2
, and again, it can be accounted for. Writing the equivalent
of Eqs. (6) and (7), we get the following enhancement of
the precision (relative to the no-EC case):

δgEC ¼ δg0

ffiffiffiffiffi
T�
1

T2

r
¼ ðgτÞδg0 ≪ δg0: (11)

Conclusions and perspectives.—We proposed and ana-
lyzed the use of EC to increase the signal to noise ratio of
various sensing protocols. Because of the very specific
characteristics of the sensing signals and the noise model,
special EC protocols were designed. We showed that EC
is a powerful method that could have considerable impli-
cations for quantum-technologies goals and precision
measurements. Finally, we showed that EC can be used
in certain cases to increase the precision of multidirectional
limited measurements, and may even help approach the
Heisenberg limit.

This work was supported by EU Integrating Project
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Note added.—Recently, we have become aware of other

papers on the same topic [30–32].
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