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Nonergodicity observed in single-particle tracking experiments is usually modeled by transient trapping
rather than spatial disorder. We introduce models of a particle diffusing in a medium consisting of regions
with random sizes and random diffusivities. The particle is never trapped but rather performs continuous
Brownian motion with the local diffusion constant. Under simple assumptions on the distribution of the
sizes and diffusivities, we find that the mean squared displacement displays subdiffusion due to
nonergodicity for both annealed and quenched disorder. The model is formulated as a walk continuous
in both time and space, similar to the Lévy walk.
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Disordered systems exhibiting subdiffusion have been
studied intensively for decades [1–5]. In these systems, the
ensemble averaged mean squared displacement (EMSD)
grows for large times as

hx2ðtÞi ∼ tβ with 0 < β < 1; (1)

whereas normal diffusion has β ¼ 1. A broad class of systems
show weak ergodicity breaking; that is, the EMSD and the
time averagedmean squareddisplacement (TMSD)differ. The
prototypical framework for describing nonergodic subdiffu-
sion is the heavy-tailed continuous-time random walk
(CTRW) [6–8], in which a particle takes steps at random
time intervals that are independently distributed with density

ψðτÞ ∼ τ−α−1 0 < α < 1; (2)

where ψðτÞ has infinite mean, which leads to a subdiffusive
EMSD β ¼ α. Furthermore, the CTRW shows weak ergo-
dicity breaking because the particle experiences trapping
times on the order of the observation time T no matter how
large T is. The CTRW was introduced to describe charge
carriers in amorphous solids [8] and has found wide
application since. Recently, there has been a surge of work
on the CTRW [9–12] triggered by single-particle tracking
experiments in biological systems [13–17] that display
signatures of nonergodicity.
A different approach to subdiffusion is to assume a

deterministic diffusivity (i.e., diffusion coefficient) that is
inhomogeneous in time [18,19] or space [20–24], but in
fact, the anomalous diffusion in these works is also non-
ergodic. Formulating models of inhomogeneous diffusivity
is timely and important, given that recently measured
spatial maps in the cell membrane often show patches of
strongly varying diffusivity [25–30]. The presence of
randomness in these experimental maps inspired us to
consider disordered media. Thus, in this Letter, we intro-
duce a class of models of ordinary diffusion with a

diffusivity that varies randomly but is constant on patches
of random sizes. We call these models random patch
models or just patch models. These models show non-
ergodic subdiffusion due to the diffusivity effectively
changing at random times with a heavy-tailed distribution
like that in Eq. (2) [31]. Note that ergodicity breaking is
usually ascribed to energetic disorder that immobilizes the
particle, e.g., via transient chemical binding [8,32,33], but
in the patch models discussed here, the particle constantly
undergoes Brownian motion. The anomaly is introduced
not by transient immobilization but rather by a disordered
medium. This is a crucial distinction because, although non-
ergodicity and heterogeneity are often observed in the same
system, the toolbox for describing them is rather spare [5].
Patchmodels address the pressing need to enlarge this toolbox.
After introducing the models, we explain the origin of

the subdiffusivity (1) and the dependence of the exponent β
on the model parameters. Then we calculate β for a patch
model using Fourier-Laplace techniques. Next, we discuss
the conditions under which the linear behavior observed in
the time-ensemble averaged MSD (TEMSD) of the CTRW
[9,10] may occur in other models and its appearance in
patch models. Next, we present our numerical results.
Finally, we address future work.
The disorder in these models is introduced via indepen-

dent and identically distributed pairs of random variables
fðDj; τjÞg or fðDj; rjÞg. Here, Dj is a diffusivity, τj is a
transit time, and rj is a length scale (radius). For clarity, we
concentrate on the one-dimensional case.
Annealed transit time model (ATTM).—In this model, the

particle begins at x ¼ t ¼ 0 and diffuses for a time τ1 with
diffusivity D1. Then, a new pair (D2, τ2) is sampled,
and from time τ1 to τ1 þ τ2, the particle diffuses with
diffusivity D2. Diffusion then continues for the third pair
and so on. We assume that the pairs fðDj; τjÞg are
distributed with a probability density function (PDF)
PD;τðD; τÞ ¼ PDðDÞPτðτjDÞ, such that as D → 0,
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PDðDÞ ∼Dσ−1 with σ > 0; (3)

and that PDðDÞ decays rapidly for large D. Furthermore,
we require that the PDF for τ given that we have sampled
D, PτðτjDÞ has mean

E½τjD� ¼ D−γ with −∞ < γ < ∞: (4)

Annealed radius model (ARM).—Here we take the radius rj
to be random rather than τj. The particle begins at the center
of the first patch with (D1, r1) and diffuses until it hits
the boundary of the patch, whereupon a new patch with
(D2, r2) is sampled. After hitting the boundary, the motion
continues at the center of the new patch. We take
PD;rðD; rÞ ¼ PDðDÞPrðrjDÞ, where PrðrjDÞ has mean
E½rjD� ¼ Dð1−γÞ=2. Since hx2ðtÞi ∝ Dt, this choice of the
exponent ensures that typical values of rj are the same as
those of

ffiffiffiffiffiffiffiffiffiffi
Djτj

p
. As we will see, the average behavior of the

ARM and the ATTM is the same. In the annealed patch
models, a new pair (Dj, rj) or (Dj, τj) is sampled every time
the particle hits a border. An example of a system showing
annealed disorder is a protein subject to receptor-ligand
interactions or conformational changes that modulate the
coupling with its environment [34,35]. The result is a
diffusivity that is not associated with a position on the
membrane but rather fluctuates in time.
Quenched radius model (QRM).—In this model, we have

pairs (Dj, rj) with the same PDF PD;rðD; rÞ as in the ARM.
The difference is that the patches are fixed in space for the
duration of each trajectory. Thus, if the particle crosses a
border from patch j with (Dj, rj) to patch jþ 1 and later
crosses back to patch j, it will find again the same (Dj, rj).
In fact, it may visit the same patch many times. An example
of a system with quenched disorder is diffusion on liquid
ordered or disordered phases of a lipid membrane [36].
Depending on the dimension and details of the model, the
difference between quenched and annealed disorder may
drastically affect the dynamics. We found that this is, indeed,
the case for the QRM compared to the ATTM and ARM.
Anomalous exponents.—As we will see, all patch models

exhibit a regime of normal diffusion (0) and two anomalous
regimes: (I) and (II). The corresponding exponents are
summarized in Table I and will be derived below. Their
origin, however, may be understood in simple terms by
considering the ATTM with the simplest PDF satisfying
Eq. (4), PτðτjDÞ ¼ δðτ −D−γÞ, that is, τ ¼ D−γ . Using
Eq. (3), we find the PDF for the transit time

ψðτÞdτ ¼ PD½DðτÞ� dD
dτ

dτ ∼ τ−
σ
γ−1dτ; (5)

which has a heavy tail for σ < γ. The density (5) will play
the role of the waiting-time density (2) with α ¼ σ=γ. In
fact, if we observe the ATTM with a stroboscope that
illuminates the particle only at the final position on each
patch, we see exactly a CTRWwith waiting times τj ¼ D−γ

j

and step lengths with variance τjDj ¼ Dð1−γÞ=2
j .

Equivalently, we can generate τ ¼ r2=D from a random
radius r ¼ Dð1−γÞ=2 with PDF PrðrÞ ∼ r−ð2σ=γ−1Þ−1, which
has a diverging variance when σ þ 1 < γ. Similar argu-
ments for the ARM and QRM as well as for the asymptotic
forms of other distributions for PτðτjDÞ, and PrðrjDÞ result
in the same boundaries between regimes as in the ATTM.
These observations explain the regimes in Table I showing
that regime (I) corresponds to divergent E½τ� and finite
E½r2�, while in regime (II), both E½τ� and E½r2� are
divergent. In this way, regime (II) is similar to the Lévy
walk [4,37].
Fourier-Laplace transform solution.—Here we compute

hx2ðtÞi in Eq. (1) for the ATTM using techniques for
analyzing CTRWs in which the waiting time and the step
length are not independent [4,38]. We again assume that the
PDF for τ is concentrated on a point, i.e., τ ¼ D−γ . To
describe partially completed motion on a patch, we write
the probability density for a displacement x at time τ on a
patch with transit time τ0 such that τ ≤ τ0 [39]:

ψðx; τ0; τÞ ¼ ϕðxjτ0; τÞψðτ0Þ: (6)

We write the PDF for a displacement x at the end of a step,
that is, at time τ, on a patch with transit time τ, as

ϕðxjτÞ≡ ϕðxjτ; τÞ: (7)

Likewise, ψðx; τÞ≡ ψðx; τ; τÞ. For the PDF of the dis-
placement on a patch x at time τ, when the only information
we have on the transit time τ0 is τ < τ0, we write

Ψðx; τÞ ¼
Z

∞

τ
ψðx; τ0; τÞdτ0; (8)

where Ψðx; τÞ describes the displacement of the particle on
the final uncompleted patch. Note that if ϕðxjτ0; τÞ is
independent of τ0, we haveΨðx; τÞ ¼ ϕðxjτ0; τÞΨðτÞ, where
the survival probability ΨðτÞ ¼ R∞

τ ψðτ0Þdτ0 is the prob-
ability that a step is not completed by time τ. An
example is the Lévy walk [4,38] in which the walker
undergoes rectilinear motion on each step; that is,
ψðx; τ0; τÞ ¼ δðjxj − cτÞψðτ0Þ, where the speed c is inde-
pendent of τ0. In our case, however,D is not independent of
τ0, and this simplification cannot be made.

TABLE I. EMSD exponents β in Eq. (1) for the annealed
(ATTM and ARM) and one-dimensional quenched (1D QRM)
models, as a function of σ and γ defined in Eqs. (3) and (4). The
exponent β for the 1D QRM in region II is unknown at present.

(0) (I) (II)

γ < σ σ < γ < σ þ 1 σ þ 1 < γ

Annealed 1 σ=γ 1 − 1=γ
Quenched 1D 1 2σ=ðσ þ γÞ Unknown
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We denote by Pðx; tÞ the PDF for the particle to be at x at
time t, with the initial condition Pðx; t ¼ 0Þ ¼ δðxÞ, and by
ηðx; tÞ the PDF of the particle’s position at time t just after
having completed a step. Then, ηðx; tÞ ¼ δðxÞδðtÞ þR∞
−∞ dx0

R
t
0 dt

0ηðx0; t0Þψðx − x0; t − t0Þ and Pðx;tÞ¼R
∞
−∞dx0

R
t
0 dt

0ηðx0; t0ÞΨðx−x0; t− t0Þ. The Fourier-Laplace
representation of Pðx; tÞ is [4]

Pðk; sÞ ¼ Ψðk; sÞ
1 − ψðk; sÞ ; (9)

where Ψðk; sÞ is the transform of Ψðx; τÞ and, likewise,
with ψðk; sÞ and ψðx; τÞ. We compute only the second
moment of Pðx; tÞ, which reads in Laplace space

hx2ðsÞi ¼ −P″ðk; sÞjk¼0; (10)

where the prime means differentiation with respect to k.
It is easy to see that ψðk ¼ 0; sÞ ¼ ψðsÞ and
Ψðk ¼ 0; sÞ ¼ ΨðsÞ. Moreover, the first moments ψ 0ðk ¼
0; sÞ and Ψ0ðk ¼ 0; sÞ vanish because the diffusion is
unbiased. Using Eqs. (9) and (10) and
Ψðk; sÞ ¼ ½1 − ψðk; sÞ�=s, we obtain for generic ψðx; tÞ,

hx2ðsÞi ¼ −ψ ″ðk; sÞjk¼0

s½1 − ψðsÞ� þ −Ψ″ðk; sÞjk¼0

1 − ψðsÞ : (11)

If the particle does not move during the transit times but
only jumps at the end of each one, as in the CTRW, then the
second term in Eq. (11) vanishes. Now we assume a heavy-
tailed transit-time density (2), which has Laplace transform
ψðsÞ ∼ 1 − bsα for small s [4], so that for small s
(corresponding to large t) Eq. (11) becomes

hx2ðsÞi ∼ −ψ ″ðk; sÞjk¼0

sαþ1
þ −Ψ″ðk; sÞjk¼0

sα
: (12)

We now specialize to the ATTM, whose displacements
obey the Brownian propagator

ϕðxjτ0; τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πDðτ0Þτp exp

�
−x2

2πDðτ0Þτ
�
; (13)

withDðτÞ ¼ τ−1=γ . We first consider the PDF (7) of x at the
end of a step. For clarity, we write fðτÞ for DðτÞτ and
suppose fðτÞ ∼ τq. Then, using Eqs. (7) and (13), the
Fourier transform of ϕðxjτÞ is ϕðkjτÞ ¼ exp ð−k2fðτÞ=2Þ,
so that ϕ″ðkjτÞjk¼0 ¼ −fðτÞ ∼ −τq. Combining this with
Eqs. (2), (6), and (7), we see that ψ ″ðk; τÞjk¼0 ∼ τq−α−1. If
0 < α < 1 and q > α, then a Tauberian theorem [4,40]
gives ψ ″ðk; sÞjk¼0 ∼ sα−q. Thus, the first term in Eq. (12)
becomes s−q−1. Using Eqs. (2), (6), (8), and (13), we find

−Ψ″ðk; τÞjk¼0 ¼ τ

Z
∞

τ
Dðτ0Þψðτ0Þdτ0 ∼ τ

Z
∞

τ
τ0q−α−2dτ0:

Performing the integral, applying the Tauberian theorem,
and inserting the result in Eq. (12), we find that the second
term scales with the same exponent as the first. Thus,
accounting for the continuous motion does not affect the
EMSD, which remains the same as in the CTRW. The
inverse Laplace transform of Eq. (12) gives us

hx2ðtÞi ∼ tq for q > α: (14)

Now we consider the case q < α. ψ ″ðk; sÞjk¼0 no longer
satisfies the hypothesis of the Tauberian theorem, but its
integral does, which leads to ψ ″ðk; sÞjk¼0 ∼ c − bsα−q.
Thus, the first term in Eq. (12) is
hx2ðsÞi ∼ ðc − bsα−qÞ=sαþ1, or for small s,
hx2ðsÞi ∼ s−α−1. A similar calculation again shows that
the second term has the same exponents. The inverse
Laplace transform gives

hx2ðtÞi ∼ tα for q < α: (15)

We return now to the ATTM, recalling that fðτÞ ¼ DðτÞτ ∼
τ1−1=γ so that q ¼ 1 − 1=γ. Using Eq. (5) for Eq. (2), we
have α ¼ σ=γ. Thus, Eq. (14) becomes hx2ðtÞi ∼ t1−1=γ for
γ > σ þ 1, and Eq. (15) becomes hx2ðtÞi ∼ tσ=γ for
0 < σ < γ. Note that these two conditions on σ and γ
are exactly those defining the anomalous regimes in the
discussion following Eq. (5). The value of β for the QRM in
regime (I) is explained by comparison with the quenched
version of the CTRW, in which the trapping times are
assigned to sites on a lattice. In one dimension, the
exponent of the EMSD (1) for the quenched CTRW with
the waiting-time PDF (2) is β ¼ 2α=ð1þ αÞ [2,41,42].
Substituting α ¼ σ=γ, we find β ¼ 2σ=ðσ þ γÞ.
Time-ensemble averaged MSD.—It is becoming clear

that the TEMSD is important both theoretically and as an
experimental tool for elucidating the source of subdiffusion
[9–11,16]. The TEMSD is given by

hx2ðtÞiT ¼ 1

T − t

Z
T−t

0

h½xðtþ t0Þ − xðt0Þ�2idt0; (16)

where t is the time lag, T the observation time, and the
overbar denotes the time average. Suppose xðtÞ is a process
with mean zero and that the EMSD and TMSD exist. If xðtÞ
has stationary increments in the wide sense, then the
integrand in Eq. (16) is independent of t0 and we have
that hx2ðtÞiT ¼ hx2ðtÞi [43]. Let us now consider xðtÞ
without the restriction to stationary increments. Expanding
the integrand in Eq. (16) and rearranging the limits on the
integrals, we find

hx2ðtÞiT ¼ 1

T − t

Z
T

T−t
hx2ðt0Þidt0 − 1

T − t

Z
t

0

hx2ðt0Þidt0

−
2

T − t

Z
T−t

0

gðt; t0Þdt0; (17)
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where gðt; t0Þ ¼ h½xðtþ t0Þ − xðt0Þ�xðt0Þi is the correlation
between the increments xðtþ t0Þ − xðt0Þ and xðt0Þ − xð0Þ.
Now we assume that gðt; t0Þ ¼ 0, that is, xðtÞ has uncorre-
lated increments. Then the third term vanishes. We,
furthermore, assume that t ≪ T and that hx2ðtÞi continues
to increase with increasing t. Then the second term
vanishes more rapidly than the first with increasing T.
Thus, the dominant contribution comes from the time
interval ½T − t; T�. Finally, if the EMSD is subdiffusive
as in Eq. (1), then the first term becomes Tβ−1t. Thus, if
(i) xðtÞ has uncorrelated increments and (ii) hx2ðtÞi ∼ tβ

with β ≠ 1, then xðtÞ has nonstationary increments and it
shows weak-ergodicity breaking, and its MSD satisfies

hx2ðtÞiT ∼ Tβ−1t: (18)

Brownian motion satisfies (i) but not (ii). Both fractional
Brownian motion [44] with β < 1 and the random walk on
a fractal [1] satisfy (ii) but not (i). The CTRW satisfies both
(i) [45] and (ii). The CTRWon a fractal satisfies (ii) but not

(i). It also shows nonergodicity but hx2ðtÞiT≁Tβ−1t [11].
The CTRW has been shown to follow Eq. (18) [9,10].

Furthermore, the statistics of the time average x2ðtÞT for the
CTRW, which does not converge to a constant random
variable, have been studied in Ref. [9]. We do not present a
proof that patch models satisfy (i), but, in fact, our
numerical results show they follow Eq. (18).
Simulations.—The results of our extensive computer

simulations of all the models are shown in Figs. 1
and 2. We used the gamma distribution for PDðDÞ in
Eq. (3) and (normal and stretched) exponential, log-normal,
and single-point distributions for PD;τðD; τÞ and PD;rðD; rÞ.
The exponent β was determined for the EMSD by a linear fit
of log½hx2ðtÞi� vs logðtÞ. To analyze the TEMSD, we first
determined the diffusivities by a linear fit of the TEMSD vs
the lag at given T. We then did a linear fit to a log-log plot of
the resulting diffusivities vs T to get β − 1 in Eq. (18). The
exponents β obtained from the EMSD and TEMSD are in
excellent agreement with Table I. The QRM in regime (II)
clearly shows subdiffusion, but at present we have no
explanation for β in this regime.
To understand why in the ATTM we position the particle

at the center of a new patch upon hitting a border, recall that
a 1D Brownian path crosses a point infinitely many times
before leaving any neighborhood [43]. Now, assume
annealed disorder and that the particle enters a new patch
at its boundary, as in the QRM. Because a new patch is
sampled each time the border is crossed, the particle
samples an infinite number of patches during the crossing.
In this case, our simulations of the EMSD did not converge
with decreasing step length, but the EMSD does converge
for the QRM, which visits the same two patches an infinite
number of times on crossing a border.
Outlook and applications.—Many questions remain to

be addressed. For instance, what is the behavior at the

boundaries of the parameter regimes, that is, for γ ¼ σ and
γ ¼ σ þ 1, as well as in regime (II) for the QRM?
Regarding dimensions d > 1: The ATTM and ARM are
the same for all d, and the EMSD for the quenched CTRW
for d > 1 has the same exponent β as the (annealed)
CTRW, with logarithmic corrections for d ¼ 2 [2,46],
but before analyzing the QRM in d > 1, a geometry of
patches consistent with PD;rðD; rÞ must be found.
Patch models provide an alternative for describing non-

ergodic diffusion in biological systems, one that is due to
inhomogeneous diffusivity rather than transient trapping,
but there are many similarities in the long-time behavior of
the CTRW and the patch models. Thus, the main open
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FIG. 1 (color online). Exponent β in Eq. (1) for annealed
models. Lines are analytic results as in Table I for different values
of σ as indicated in the figure. Symbols are numerical simu-
lations. Lines and symbols vary from dark to light with increasing
σ. Exponents are extracted, respectively, from EMSD of the
ATTM (downward triangle), EMSD of the ARM (upward
triangle), and TEMSD of the ARM (circle). The inset shows a
density plot of β vs both γ and σ.
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FIG. 2 (color online). Exponent β in Eq. (1) for the 1D
quenched radius model (1D QRM). Lines as in Fig. 1. Symbols
are exponents extracted from numerical simulations of the EMSD
(upward triangle) and TEMSD (circle). Lines and symbols vary
from dark to light with increasing σ. Shading indicates region
(II), where the exponent is at present unknown.
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problem is finding methods to distinguish them and regime
(I) from (II). Promising leads in this direction are studying
a first-passage quantity such as the survival time density or
comparing the exponents σ, γ, and β appearing in our
models with those extracted from spatial maps of diffu-
sivity and time-resolved trajectories, or performing a
detailed analysis of the models in terms of trajectories
with long but finite (i.e., not asymptotically long) duration.
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