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We investigate theoretically a quantum optomechanical realization of a heat engine. In a generic
optomechanical arrangement the optomechanical coupling between the cavity field and the oscillating
end mirror results in polariton normal mode excitations whose character depends on the pump detuning and
the coupling strength. By varying that detuning it is possible to transform their character from phononlike
to photonlike, so that they are predominantly coupled to the thermal reservoir of phonons or photons,
respectively. We exploit the fact that the effective temperatures of these two reservoirs are different to
produce an Otto cycle along one of the polariton branches. We discuss the basic properties of the system
in two different regimes: in the optical domain it is possible to extract work from the thermal energy of a
mechanical resonator at finite temperature, while in the microwave range one can in principle exploit the
cycle to extract work from the blackbody radiation background coupled to an ultracold atomic ensemble.
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Heat engines operating in the quantum regime have
attracted much recent attention due to their potential to
investigate the quantum limit of classical thermodynamical
concepts such as the Carnot efficiency limit—and perhaps
overcome that limit, to better understand thermalization in the
deep quantum regime, and, on a more applied side, in the
quest for the realization of nanoengines of increasingly small
size [1–5]. Microscopic scale heat engines have been realized
in micro-electro-mechanical systems [6,7], but reaching the
quantum regime remains a challenge due to thermal noise in
the mechanical elements. Theoretical proposals for quantum
heat engines have been advanced involving single ions [8],
ultracold bosonic atoms [9], and quantum dots [10], but so far
their experimental realization has remained elusive.
This Letter proposes and analyzes theoretically a quan-

tum heat engine based on a cavity optomechanical setup.
This system presents several attractive features: first, it
is a truly mechanical system; second, it has the potential
to operate deep in the quantum regime using existing, state-
of-the-art equipment; third, it is conceptually extremely
simple; and fourth, it offers, in principle at least, the potential
to extract work from the 2.7 K blackbody radiation back-
ground. Finally, when combined with progress in quantum
optics toward the realization of squeezed reservoirs [11],
it may provide a route to testing the Carnot efficiency limit
in the quantum regime.
The key element of a heat engine is a medium that may be

used to extract work and that exchanges heat with thermal
reservoirs at two different temperatures. Cavity optome-
chanics provides a conceptually simple way to realize that
goal: The radiation pressure force permits the exchange of
energy between cavity photons and mechanical phonons,

and crucially the cavity and mechanical damping couple
the system to both a cold and a hot reservoir. Cavity
optomechanics has witnessed spectacular developments in
the last decade (see, e.g., Refs [12–14] for recent reviews),
and can operate deep in the quantum regime [15–17]. Also,
quantum entanglement and squeezed states of photons and
phonons have been demonstrated in these systems [18,19].
We consider a standard optomechanical setup with a

cavity mode at frequency ωc coupled to a mechanical
resonator at frequency ωm—for example, the harmonically
bound end mirror of a Fabry-Pérot resonator, with single-
photon coupling strength g. The resonator is driven by an
optical pump field with strength αin and frequency ωp.
In addition, the intracavity field and mechanical oscillator
suffer damping of rates κ and γ. We assume that the
intracavity field is strong enough that it can be described
as the sum of a large mean field α and small quantum
fluctuations. In a frame rotating at ωp the Hamiltonian of
the entire system can then be linearized as

H ¼ −ℏΔâ†âþ ℏωmb̂
†b̂þ ℏGðb̂þ b̂†Þðâþ â†Þ; (1)

where the bosonic annihilation operators â and b̂ account for
the fluctuations of the photon and phonon mode annihilation
operators around their mean amplitudes α and β, G ¼ αg
and the detuning Δ ¼ ωp − ωc − 2βg includes the mean
radiation pressure induced change in resonator length. In
steady state α ¼ αin=Δ and β ¼ −gα2=ωm for small damp-
ing [20]. (We take α and β to be real without loss of
generality in the following.) The quadratic Hamiltonian H
describes two linearly coupled harmonic oscillators. In the
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red detuned regime Δ < 0, it leads in general to stable
dynamics that can result in sideband cooling [21,22].
To discuss the energy conversion between photons and

phonons it is convenient to introduce a normal mode
representation of the system. After removing a constant
term, we can express H in the diagonal form [23,24]

H ¼ ℏωAÂ
†Âþ ℏωBB̂

†B̂; (2)

where the new operators Â and B̂ are the boson annihilation
operators for the normal-mode excitations of the system
(polaritons), with frequencies

ωA;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ω2

m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2 − ω2

mÞ2 − 16G2Δωm

p
2

s
: (3)

In general, these excitations are superpositions of the
cavity field and the mechanics. As shown in Fig. 1, for
the sideband resonant caseΔ ¼ −ωm, the degeneracy in the
uncoupled energy spectrum is lifted by the optomechanical
interaction and normal mode splitting occurs with a
separation of the order of 2G, as been experimentally
observed in Ref. [25].
For Δ ≪ −ωm, the low-energy polariton branch, char-

acterized by the bosonic annihilation operator B̂ and the
frequency ωBðΔÞ, describes phononlike excitations, with
ωB approaching ωm. In contrast, on the other side of the
avoided crossing, −ωm ≪ Δ < 0, and in the weak coupling
regime G=ωm ≪ 1, the operator B̂ annihilates photonlike
excitations of frequency ωB ∼ −Δ. The opposite holds for
the polariton branch of frequency ωAðΔÞ, which is photon-
like for frequencies far red-detuned from Δ ¼ −ωm and
phononlike on the other side.

In addition to the coherent dynamics, these excitations
also undergo damping and decoherence, resulting in the
thermalization of the system. The polariton decay rates ΓA
and ΓB are combinations of the cavity decay rate κ and
mechanical damping rate γ [23], the temperatures of the
associated thermal reservoirs TA and TB depending on
the original bath temperatures, Ta for the photons and Tb
for the phonons. At optical frequencies it is an excellent
approximation under normal laboratory conditions to take
Ta ≈ 0 K—but as we discuss later on, this is not the case in
the microwave regime. We then have Ta ≪ Tb. Both the
properties of the normal-mode excitations, and thus their
photonlike or phononlike nature, and their reservoir tem-
peratures are controlled by the detuning Δ. The proposed
heat engine relies on this simple observation: it operates by
varying Δ to cycle the nature of the polariton between
phononlike and photonlike and exploits the difference
in the associated effective reservoir temperatures to extract
work from the system.
We proceed by first considering a quantum heat engine

that operates along a single polariton branch. We focus
specifically on the lower energy normal-mode B and
consider an Otto cycle [26] consisting of the following
four consecutive steps.
(1) Isentropic expansion.—This step is achieved by

varying the detuning from its initial value Δi ≪ −ωm,
where the polariton is to an excellent approximation
phononlike, to the final value −ωm ≪ Δf < 0 over a time
interval τ1. In this step ωB changes from the high value
ωi ¼ ωBðΔiÞ to a lower frequency ωf ¼ ωBðΔfÞ. The
change in Δ should occur in such a way that the mean
intracavity optical field amplitude α remains constant. In
addition the speed of the process must be such that two
potentially conflicting requirements are simultaneously
satisfied. First, it must be fast enough to be very nearly
isentropic: such transformations are carried out by ther-
mally insulating the system from its reservoirs, so that
the thermal mean particle number N̄i ¼ hB̂†B̂iωi;Ti

at the
initial temperature Ti and frequency ωi remains unchan-
ged. Since the coupling to the thermal reservoirs cannot
be switched off in our optomechanical system, we must
therefore have that τ1 is short compared to the phonon
thermalization time and the cavity decay time. This can,
however, conflict with a second requirement that the
transformation be slow enough to be adiabatic [27], in
the sense that the system does not undergo transitions
between the two polariton branches. This requires that
1=τ1 be much smaller than the smallest frequency sepa-
ration between the excitation bands A and B, which occurs
at Δ ¼ −ωm and is of order 2G.
(2) Cold isochoriclike transition.—At this point the

photonlike polariton B is predominantly coupled to the
photon reservoir at temperature Tf ≈ 0 K, and is allowed to
thermalize over a time τ2, the detuning remaining fixed at
the value Δf. During that step, whose duration must be

FIG. 1 (color online). Eigenfrequencies of the normal modes A
and B, in units of ωm, as functions of the normalized cavity
detuning Δ=ωm for the dimensionless optomechanical coupling
strength G=ωm ¼ 0.1. Dashed lines: noninteracting energies of
the phonon and photon modes. Δi and Δf are the initial and final
detunings for a generic Otto cycle.
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1=τ2 < κ to ensure full thermalization, the thermal occu-
pation adjusts to a lower thermal mean particle num-
ber, N̄i → N̄f.
(3) Isentropic compression.—The detuning Δ is then

returned to its initial value, during which step the polariton
frequency returns to the phononlike higher value ωi with
N̄f remaining constant provided that τ3 satisfies the same
conditions as τ1.
(4) Hot isochoriclike transition.—The polariton, its

frequency now fixed at ωi, remains in contact with the
phonon reservoir for a time 1=τ4 < γ, and its thermal
population returns to the initial value N̄i.
One can gain a simple physical understanding of the

engine cycle by considering the effects of varying the detu-
ning Δ, see Fig. 2. In practice, this can be achieved by
changing the frequency of the driving field, but importantly,
we emphasize that all detuning changes must be performed
while simultaneously changing the pumping rate αin so that
the mean intracavity amplitude α remains constant.
During stroke (1) Δ is varied, so that ωp becomes closer

to resonance with the cavity mode frequency ωc. As this
happens the phononlike thermal excitations, which are
initially large due to the contact with a thermal bath that is
essentially at the temperature of the mechanics, are trans-
formed into photonlike excitations. This occurs at a rate
characterized by the coupling strength G. In this step the
vibration amplitude of the mechanical resonator decreases.
The excess energy is infused into the intracavity field, and
as a result the resonator length increases by a small amount
due to the increased radiation pressure. It is at this point that
the mechanical work on the oscillator is produced by the
optomechanical heat engine. During the thermalization step
of stroke (2) the population of the photonlike excitations
decays to zero at rate κ (for a photon reservoir at zero
temperature). If the resonator length were to instantly return
to its initial position following this decay, the total
mechanical work would then be zero. But if κ ≫ γ, as is
often the case in cavity optomechanics, then changes in
cavity length as well as the population of the phononlike
excitations can be neglected during the time τ2. In stroke
(3) the remaining polariton excitations (if any) are turned
back into phononlike quanta by adjusting Δ. The phonon

branch is finally repopulated via thermal contact with the
hot mechanical reservoir in stroke (4) and the cavity length
also returns to its initial value.
We now analyze the performance of this heat engine,

following the approach of Ref. [8] to determine the total
work and thermal efficiency of the Otto cycle. The average
values of the energy of the system at the four stages are
given by E1 ¼ ℏωiN̄i, E2 ¼ ℏωfN̄i, E3 ¼ ℏωfN̄f, and
E4 ¼ ℏωiN̄f, and the total work per cycle is W ¼ E1−
E2 þ E3 − E4. The thermal efficiency is η ¼ W=Q,
defined as the ratio of the total work per cycle and the
heat received from the hot reservoir, Q ¼ E1 − E4 which
corresponds to stroke (4). The total work and heat received
per cycle are

W ¼ ℏðωi − ωfÞðN̄i − N̄fÞ; (4)

Q ¼ ℏωiðN̄i − N̄fÞ; (5)

where the conditions ωi > ωf and N̄i > N̄f ensure that W
and Q are positive, and the thermal efficiency is

η ¼ 1 −
ωf

ωi
: (6)

The total work depends on the mean polariton numbers N̄i
and N̄f, which are combinations of the thermal phonon
number n̄b and the thermal photon number n̄a. The coef-
ficients of these combinations are given by the Bogoliubov
diagonalization. Their analytical expressions are cumber-
some and not very transparent, and we proceed instead with
a numerical study of the main feature of the engine cycle.
We choose Δi ¼ −3ωm, so that the polariton population is
predominantly on the lower polariton branch B, and evaluate
numerically η and W as a function of the normalized
coupling strength G=ωm and final detuning Δf=ωm.
The results are summarized in Fig. 3, which illustrates the

trade-off betweenmaximumwork andmaximum efficiency,
as already discussed in previous works [28]. The maxi-
mum efficiency is reached for G=ωm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δf=ωm
p

=2,
which follows from the condition ωf ¼ 0—note that
this is also the stability threshold for the linearized form
of optomechanical coupling that we consider—and the
maximum amount of work is extracted for small values
of G=ωm and −Δf=ωm. (For large values of G=ωm and
−Δf=ωm, the polariton branch B is no longer strongly
photonlike. In this casewe find that while the efficiencymay
still be high, the output workW is reduced. Note, however,
that here the simple heuristic argument that we invoked
to separate the effects of the two reservoirs ceases to be
appropriate.)
For ðG=ωm;−Δf=ωmÞ ≪ 1 we can derive perturbative

analytical forms for W and η. In that limit the upper
and lower frequencies of the cycle are ωi ¼ ωm and
ωf ¼ −Δf − 2G2=ωm, and the thermal mean polariton

FIG. 2 (color online). Intuitive physical picture of the
Otto cycle for the optomechanical heat engine, see text for
details.
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numbers are N̄i ¼ n̄b and N̄f ¼ ð1þ 4ΔfG2=ω3
mÞn̄aþ

2G2n̄b=ω2
m, with n̄a ¼ 0 in the case of optical frequencies

and n̄b ¼ 1=ðeℏωm=kBTb − 1Þ, where kB is the Boltzmann
constant. The total work is then

W
ℏωm

¼
�
Δf

ωm
þ 2G2

ω2
m
þ 1

���
1 −

2G2

ω2
m

�
n̄b −

G2

ω2
m

�
: (7)

In the high temperature limit of the phonon bath,
ℏωm=ðkBTbÞ ≪ 1, W is maximum for G2=ω2

m ¼
−Δf=ð4ωmÞ − ℏωm=ð8kBTbÞ. If we substitute this into
Eq. (6), we obtain the efficiency at maximum work

ηW ¼ 1 −
�
−Δf

ωm
þ ℏωm

4kBTb

�
: (8)

Remembering that Δf < 0, this shows that the efficiency is
limited by

ηW < 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏΔf

2kBTb

s
; (9)

which corresponds to the quantum extension of the Curzon-
Ahlborn efficiency [8,29] where the lower classical thermal
energy kBTa has been replaced by the ground state energy
of a quantum oscillator of frequency −Δf. As discussed in
the analysis of other proposed quantum heat engines [5,30]
this limit, as well as the Carnot limit which in our case is
½1þ ℏΔf=ð2kBTÞ�, may be surpassed by using a squeezed
phonon reservoir or entangled photon and phonon reservoirs.
So far we have considered a quantum heat engine

operating on the lower polaritonic branch of the system.
The situation is different if we consider the upper polaritonic

branch instead: in that case the total work of the optome-
chanical heat engine is negative, a consequence of the fact
that N̄i < N̄f. It follows that if both branches are signifi-
cantly populated, the effect of the two different cycles
counterbalance each other and the total work is reduced.
In order to avoid this situation, we had to choose an initial
condition that suppresses the thermal population on branch
A. This was implicitly achieved by starting from a detuning
Δi for which the lower polariton branch is strongly phonon-
like—and hence the upper branch is strongly photonlike—
and an initial thermal equilibrium state where the phonon
bath is much warmer than the photon bath. At the start the
state of the engine is therefore very asymmetrical between
photons and phonons, with hB̂†B̂i ≫ hÂ†Âi. However, at
stage (2) the situation is reversed and complete thermal-
ization of the system would lead to hÂ†Âi ≫ hB̂†B̂i.
Preventing this exchange of populations requires
γ ≪ 1=τ2 < κ, so that the system thermalizes with the cavity
reservoir but that process is too fast to have a significant
effect on the thermal phonon population. Combined with our
previous considerations, the hierarchy of time scales required
for the operation of the proposed heat engine is

1=τ4 < γ ≪ 1=τ2 < κ < 1=τ1;3 ≪ G ≪ ωm: (10)

As an example, a mechanical resonator of frequency
ωm ¼ 2 × 108 Hz and quality factor Q ¼ 105, coupled to
an optical cavity of linewidth κ ¼ 106 Hz and a steady-state
occupation of jαj2 ¼ 1010 via a optomechanical coupling
g ¼ 102 Hz would fulfill the conditions (10) necessary to
realize the proposed Otto cycle [31].
To conclude, we return to the assumption that the

temperature of the optical bath is essentially T ¼ 0, so that
the phonon bath is by default the “hot” reservoir. This is an
excellent approximation in the optical regime, but needs not
be so in general. Specifically, in the microwave regime the
2.7 K cosmic blackbody background results in significant
photon occupation numbers around 102 GHz frequencies.
By the same token, it is also possible to realize quantum
mechanical oscillators that operate essentially at T ¼ 0, for
instance in ultracold atomic gases [14,32]. This suggests
that it should be possible to exchange the roles of photons
and phonons in our optomechanical heat engine, provided
that the mechanical oscillator is cold enough [33]. A key
condition in that case is that the temperature of the atomic
system must be low enough that thermal motion does not
wash out the coherent momentum recoil 2ℏk of the atoms
due to their interaction with photons of wave vector k. As an
example, for a condensate of lithium atoms this condition
results in a temperature of the atomic sample not to exceed
a pK for 2π × 300 GHz microwave photons. While chal-
lenging, this does not seem to be completely impossible.
If realized, a quantum heat engine operating on the upper
polariton branch of Fig. 1 would therefore be able to extract
heat energy from the cosmic microwave background [34].

FIG. 3 (color online). Thermal efficiency and total work of the Otto
cycle, in units of ℏωm, for Ta ¼ 0 and Tb ¼ 0.1 K, corresponding to
n̄a ¼ 0, n̄b ¼ 10, and ωm ¼ 200 MHz. In the white region the
linearized system is unstable.
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Future work will carry out detailed dynamical calcula-
tions to evaluate the role of imperfections due to the
coupling to the thermal reservoirs during all steps of the
cycle, with particular emphasis on nonadiabatic transitions
between the polariton branches and to nonideal aspects of
the control loop required to maintain the mean intracavity
power as the detuning is varied. Deep in the quantum
regime care is also needed to assess effects such as the
conversion of the mean field into polaritons. In that regime
the work produced by the engine is extremely small and
its detection nontrivial, with measurement backaction
expected in general to significantly impact the Otto cycle.
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