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Identical particles and entanglement are both fundamental components of quantum mechanics.
However, when identical particles are condensed in a single spatial mode, the standard notions of
entanglement, based on clearly identifiable subsystems, break down. This has led many to conclude that
such systems have limited value for quantum information tasks, compared to distinguishable particle
systems. To the contrary, we show that any entanglement formally appearing amongst the identical
particles, including entanglement due purely to symmetrization, can be extracted into an entangled state of
independent modes, which can then be applied to any task. In fact, the entanglement of the mode system
is in one-to-one correspondence with the entanglement between the inaccessible identical particles. This
settles the long-standing debate about the resource capabilities of such states, in particular spin-squeezed
states of Bose-Einstein condensates, while also revealing a new perspective on how and when entanglement
is generated in passive optical networks. Our results thus reveal new fundamental connections between
entanglement, squeezing, and indistinguishability.
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Identical particles are essentially axiomatic in quantum
mechanics [1]. Entanglement is another fundamental quan-
tum concept, which serves, within the local operations and
classical communication (LOCC) paradigm, as a valuable
resource for quantum information tasks [2]. However, the
notion of entanglement for identical particles is trouble-
some because one can have subsystems which cannot be
operationally distinguished. For instance, what is a mean-
ingful definition of entanglement when identical particles
occupy the same spatial mode? How can we make sense of
entanglement between subsystems that are not operation-
ally accessible?
Experimental progress in Bose-Einstein condensates

(BECs), related to multiparticle entanglement, has magni-
fied the existing debate [3–19]. In such experiments, spin-
squeezed states [20], useful in high-precision metrology
[21,22], are generated. Taking individual particles as
subsystems, such states are highly entangled. In fact,
due to symmetrization, all correlated states of identical
particles are strongly multiparticle entangled [23,24]. But
since our access to the designated subsystems is funda-
mentally restricted by indistinguishability, what is the use
of this entanglement? Many authors share the viewpoint
that such entanglement is a mathematical artifact, and not
fully legitimate [3,11,16,25–37]. Entanglement that results
purely from symmetrization has variously been described
as unphysical [31,33], inaccessible [3,27], and not a
resource (in the standard quantum information sense)
[3,11,27,30,33–36]. One can avoid this illusion by modi-
fying the definition of entangled states [11,25–30,32,36], or
by defining entanglement relative to the subsystem struc-
ture of observables, not states [31,33,34,38–40]. While
correlated states of identical particles may indeed be useful
for metrology [41,42], the notion of multiparticle entangle-
ment in such systems is seemingly flawed.

In this Letter, we reexamine systems of indistinguishable
particles, resurrecting legitimate meaning for their entan-
glement structure. Using intuition similar to Ref. [43],
entanglement should be given meaning only when it can
be extracted onto distinguishable registers via operations
which themselves do not contribute any entanglement.
Such entanglement can then be applied to standard quan-
tum information tasks. Remarkably, we show that this
extractable entanglement exactly corresponds with the
entanglement one would find within a naive multiparticle
description. Specifically, identical particle entanglement
can be transferred, with unit probability, onto independent
modes using elementary operations. Thus, symmetrization
entanglement is a fundamental, ubiquitous, and readily
extractable resource for standard quantum information
tasks. Our results demonstrate the usefulness of single-
mode BECs for many tasks beyond metrology, and reveal
new insight on how and when entanglement is generated
in passive optical networks.
Suppose we have N identical particles in the same spatial

mode. We focus on BECs, because they are the largest
source of debate in the literature, but these ideas also
apply to other scenarios, such as photons with polari-
zation degrees of freedom (see Ref. [13] for a related
fermionic example). Let each particle have two internal
states (for convenience, called “spin down” or “spin up”),
so that individual particles have a two-dimensional Hilbert
space H ¼ spanfj0i; j1ig. Formally, we can describe the
state of the N-particle system within the Hilbert space
HN ≔ H⊗N . Implicit here is a specific pseudolabeling of
the particles: particle p is associated with the pth Hilbert
space in the decomposition. For identical particles, these
pseudolabels cannot be distinguished experimentally and
have ambiguous physical meaning.
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Mathematically, however, this “first quantization” basis
gives sufficient structure to consider entanglement. For
N > 1, we can imagine partitioning this space into disjoint
subsystems containing fixed numbers of particles. In the
decomposition HN ¼ H⊗N , each particle is its own sub-
system. On the other extreme, we can consider a biparti-
tion, grouping the first NX particles into one subsystem
and the remaining NY into another, giving HN ¼
H⊗NX ⊗ H⊗NY ¼ ∶HX ⊗ HY . Here we will focus mainly
on bipartite entanglement; extensions to multipartite sce-
narios are analogous (e.g., see Supplemental Material [44]).
Alternatively, we can use a “second quantization” basis
that more accurately describes the accessible degrees of
freedom. For N identical particles in mode A, the sym-
metric states fjn;N − nig enumerate composite states that
have n spin-down and N − n spin-up particles. These can
be obtained by symmetrizing single-particle states:

jn;N − niA ¼ 1ffiffiffiffiffiffiffi
ðNnÞ

q S½j0i1…j0inj1inþ1…j1iN �; (1)

where S generates a sum over all unique permutations with
n spin-down particles out of N and ðNnÞ is the normalization.
These states form an orthonormal basis for the symmetric
subspace on which all physical states live. The symmetric
subspace can also be generated using creation operators:
â†0jk;liA¼

ffiffiffiffiffiffiffiffiffi
kþ1

p jkþ1;liA and â†1jk;liA¼
ffiffiffiffiffiffiffiffiffi
lþ1

p jk;lþ1iA.
Mode splitting.—In the typical setting, bipartite entan-

glement is defined relative to two parties with independent,
accessible subsystems. In contrast, in the full N-particle
state space, the subsystems which appear to be entangled
are inherently inaccessible. Intuitively, we might imagine
getting at this entanglement by somehow splitting the
particles up into physically distinguishable modes. For
instance, we could let a BEC cloud spread until it separates
into distinct clusters, or we could use a more tunable
operation such as tunneling into neighboring modes. The
occupied output modes then provide some physically
accessible degrees of freedom, and we can safely speak
of entanglement between these modes.
But there are a few obvious concerns. First, we will still

not have any access to the particle pseudolabels that
characterize the original state’s entanglement. If we find
that there is a single particle in output mode C, we can use
this information to distinguish this particle in future experi-
ments. But relative to the original pseudolabeling, “the
particle in modeC” remains some symmetric superposition
of all identical particles from the initial state. So although
one can consider mode entanglement in the output state,
how is this related to the entanglement defined relative to
the pseudolabels? The second issue is the mode-splitting
process itself. Since we start with one mode and end with
more than one, we have essentially performed a nonlocal
operation. How do we know that entanglement between the
output modes was not created by the splitting operation
itself? Finally, for massive particles, there is the issue of
superselection rules [43], whereby superpositions of local

particle numbers cannot be measured. How might this
affect the entanglement we can extract?
To explore these issues, we consider the example of a

beam splitter transformation from optics. For BECs, this is
equivalent to a tunneling operation where particles can leak
from modeA into a neighboring modeB via a Hamiltonian
of the form H ∼

P
k¼0;1ðb̂†kâk þ â†kb̂kÞ. We denote the

modes posttunneling by C and D. Suppose we initially
have the 3-particle state jϕiniA ¼ j2; 1iA, a symmetric state
with 2 spin down and 1 spin up particles. Because of
symmetrization, this state is entangled in the pseudolabel
basis (for any nontrivial bipartition). We then apply a
splitting transformation â†k → rĉ†k þ td̂†k (k ¼ 0, 1); this
operation, which is insensitive to the internal degrees of
freedom, transfers single particles from mode A into CðDÞ
with amplitude rðtÞ. The other mode B initially has no
particles. The final state is

jϕoutiCD ¼ r3j2; 1iCj0; 0iD
þ

ffiffiffi
3

p
r2t

1ffiffiffi
3

p ½j2; 0iCj0; 1iD þ
ffiffiffi
2

p
j1; 1iCj1; 0iD�

þ
ffiffiffi
3

p
rt2

1ffiffiffi
3

p ½j0; 1iCj2; 0iD þ
ffiffiffi
2

p
j1; 0iCj1; 1iD�

þ t3j0; 0iCj2; 1iD: (2)

We have ordered the output state with respect to different
possibilities for local particle numbers. In the first or last
case (all particles in one mode), the output state is the same
as the input state, with no mode entanglement. For the other
cases, there is clearly entanglement between the output
modes. Even if we project onto fixed local particle numbers
to respect superselection rules [43], we have, on average,
nonzero entanglement in the output state. This entangle-
ment is now a valid resource in the LOCC paradigm.
Evidently, correlated single-mode states have some many-
body coherence properties [37] that may lead to mode
entanglement after splitting. In fact, we recognize a con-
ceptual connection with the widely known notion from
continuous-variable optics ([45–48]) that beam splitters
transform nonclassical states (e.g., squeezed states) into
mode entangled states.
But how does this output mode entanglement relate to

the input state’s apparent pseudolabel entanglement? For
concreteness, suppose we group particles 1 and 2 into
subsystem X and particle 3 into subsystem Y. To classify
the entanglement, we put jϕiniA into Schmidt form:

j2; 1iA ¼ 1ffiffiffi
3

p ðj0i1j0i2j1i3 þ j0i1j1i2j0i3 þ j1i1j0i2j0i3Þ

¼ 1ffiffiffi
3

p
�
½j0i1j0i2�j1i3 þ

ffiffiffi
2

p �
1ffiffiffi
2

p S½j0i1j1i2�
�
j0i3

�

¼ 1ffiffiffi
3

p ðj2; 0iXj0; 1iY þ
ffiffiffi
2

p
j1; 1iXj1; 0iYÞ: (3)

In the last line we have rewritten the states within the
fictitious subsystems X and Y in second-quantized form.
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We now make the crucial observation that Eq. (3) is
algebraically equivalent to the mode-split state in Eq. (2)
for the case where ðNC; NDÞ ¼ ðNX;NYÞ ¼ ð2; 1Þ, as
considered in this example. In fact, we can establish a
general equivalence.
Schmidt equivalence of particle and mode states.—Take

any single-mode basis state jn;N − niA, and fix a biparti-
tion into (NX, NY) particles. Consider the same state after it
has been split by any transformation â†k → rĉ†k þ td̂†k, with
k ¼ 0, 1, and jtj2 þ jrj2 ¼ 1, followed by projection onto
local particle numbers (NC, ND). If ðNC; NDÞ ¼ ðNX;NYÞ
or (NY ,NX), then the Schmidt form of the input state (in the
given particle bipartition) is equivalent to the Schmidt form
of the output state (in the mode bipartition).
Proof.—The Schmidt form of the final state,

which we denote by jn;N − niðNC;NDÞ, can be straight-
forwardly but laboriously obtained by writing the input

state as jn;N − niA ¼ â0†nâ1†ðN−nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðN−nÞ!

p j0; 0iA, transforming

â†k → rĉ†k þ td̂†k, then projecting onto terms with fixed
local particle numbers (NC, ND), i.e., those with prefactor
∼rNCtND ; see Supplemental Material [44]. Once normal-
ized, this automatically yields the Schmidt form:
jn;N−niðNC;NDÞ ¼

P
λnC;nD junCiCjunDiD, where the local

states of mode K ¼ C, D are second quantization basis
states: junKi ¼ jnK; NK − nKiK, and the sum is over all
valid (nC, nD) such that nC þ nD ¼ n. The Schmidt

coefficients are calculated to be λnC;nD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNC
nC
ÞðND

nD
Þ=ðNnÞ

q
.

In first quantization, we begin with Eq. (1). We subdivide
this state into parts X, Y, where X contains the pseudolabels
1;…; NX and Y the rest (in fact, by symmetrization, the
specific order will not matter). After symmetrizing, we
collect terms that have the same number nX of spin-down
states within X; Y will contain the remaining nY ¼ n − nX.
For every pair (nX, nY), both parts have a symmetrized
form:

jn;N − niA ¼ 1ffiffiffiffiffiffiffi
ðNnÞ

q X
nXþnY¼n

½SjvnXi�½SjvnY i�; (4)

where jvnXi ¼ j0i1…j0inX j1inXþ1…j1iNX
and analogously

for Y. Comparing to Eq. (1), we see that SjvnZi ¼ffiffiffiffiffiffiffiffiffi
ðNZ
nZ
Þ

q
jnZ; NZ − nZiZ for Z ¼ X, Y. Since the states

jnZ; NZ − nZiZ are orthonormal, this is the Schmidt

form, with coefficients λnX;nY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNX
nX
ÞðNY

nY
Þ=ðNnÞ

q
. Thus, if

ðNC; NDÞ ¼ ðNX;NYÞ or (NY , NX), then the particle
Schmidt form and the mode Schmidt form are in one-to-
one correspondence. ▪
This equivalence has strong consequences. The single-

mode state jn;N − niA and its two-mode equivalents
jn;N − niðNC;NDÞ not only have the exact same entanglement
structure, but the former states can be easily mapped to

the latter. This holds as well for arbitrary superpositions
jϕiA ¼ P

nϕnjn;N − niA, since the entanglement proper-
ties within any bipartition are completely determined by the
coefficients fϕng and the Schmidt structure of the basis
vectors. By linearity, the algebraic correspondence also
holds for mixed states. Thus, by enacting the isomorphism
jn; N − niA↦jn; N − niðNC;NDÞ∀n, [with ðNC; NDÞ ¼
ðNX;NYÞ], we can map any single-mode state into its
two-mode version, where the entanglement structure is
not only preserved, but is readily accessible. To emphasize,
although we cannot individually access the identical par-
ticles, their overall state is, in fact, accessible, since it can be
mapped faithfully onto distinguishable mode subsystems.
We will call any protocol that achieves the isomorphism
jn;N − niA↦jn;N − niðNC;NDÞ∀n, ideal mode splitting.
Mode splitting does not fit in the framework of LOCC,

and the process appears to “create” entanglement (this is a
well-known property of beam splitters). By the above
isomorphism, the structure and amount of mode entangle-
ment, for fixed local particle numbers, are completely
determined from the input state. Thus, mode splitting is
a mechanism for faithfully transferring correlations from
inaccessible identical particles onto accessible modes. If the
splitting is sufficiently passive (we give formal conditions
below), all mode entanglement comes from the initial state,
and no more entanglement can be generated than what
appears from theN-particle decomposition. Finally, it is not
a practical problem if a nonideal mode splitting creates
extra entanglement (e.g., by having a nonvacuum state in
input mode B); such entanglement is nevertheless a useful
resource. However, we cannot interpret such entanglement
as coming solely from the input state.
Probabilistic mode splitting and mode mixing.—Along

with tunneling or beam splitting, what other operations
achieve the desired isomorphism? Besides the basic ability
to coherently map one mode into two, there are three other
important components. First, to put particle and mode
entanglement on the same footing (in terms of subsystem
size), and to exclude superpositions of different local
particle numbers from consideration, we must project onto
fixed particle numbers for each output mode. Second, the
operation should not introduce any extra particles. Finally,
the process should not (de-)excite the particles, so that the
total number of excitations will be preserved. The reason-
ing for the latter two requirements is similar: such oper-
ations could lead to entanglement in the output mode when
none is apparent in the input partitioning. Consider the
initial state jN; 0iA, which has no pseudolabel entangle-
ment. If the output system contains a spin-up particle
(either externally added or internally excited), then output
states of the form jM; 1iðNC;NDÞ could appear, which are
mode entangled for all NC, ND ≠ 0. Obviously this
entanglement is not representative of the initial state’s
entanglement structure.
These basic requirements are necessary and sufficient to

give the desired isomorphism—at least probabilistically—
ensuring that the splitting itself does not contribute any
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entanglement [49]. To show this, we consider the slightly
more general situation of mode mixing, from the input
spaceHin ¼ spanfjn;NAB − niðNA;NBÞg to the output space
Hout ¼ spanfjn;NCD − niðNC;NDÞg, where the basis states
encompass all combinations with fixed global particle
numbers NA þ NB ¼ NAB, NC þ ND ¼ NCD. This extra
generality will be useful for our deterministic mode-
splitting protocol later. For particle excitation, we use
the operators ĴþAB ≔ â0â

†
1þ b̂0b̂

†
1 and ĴþCD ≔ ĉ0ĉ

†
1þ d̂0d̂

†
1.

The conjugate operators Ĵ−KL ≔ ðĴþKLÞ† model deexcitation.
We denote the parameters ðNA; NB;NC; NDÞ by the
shorthand fNg.
Theorem 1. Necessary and sufficient conditions for mode

mixing.—LetM∶Hin → Hout be a linear particle-preserving
map, with NAB ¼ NCD ¼ N. Then M has the effect
Mjn;N−niðNA;NBÞ ¼

P
NCþND¼NCfNgjn;N−niðNC;NDÞ∀n,

where each CfNg ∈ C, if and only if M commutes with
particle excitation and deexcitation, in the sense that
MĴ�AB ¼ Ĵ�CDM.
Proof.—If M commutes with Ĵþ, then, by

direct calculation, the matrix elements MfNg
mn ≔

hm;N −mjðNC;NDÞMjn;N − niðNA;NBÞ must satisfy the
recurrence relation

MfNg
mþ1;nþ1 ¼ MfNg

m;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞðN − nÞ
ðmþ 1ÞðN −mÞ

s
: (5)

As well, M will commute with the operator Ĵ−Ĵþ, which
leads to MfNg

mn ½nðN − nþ 1Þ −mðN −mþ 1Þ� ¼ 0. The
bracketed term has roots m ¼ n and m ¼ N − nþ 1.
Combining this with the recurrence relation, we conclude
that each submatrix MfNg is a multiple of the identity:

MfNg
mn ¼ CfNgδmn: (6)

The overall map has the form M ¼ P
fNgMfNg, where

each MfNg satisfies Eq. (6), and the sum is over all ways
to split up the N particles in both the input and output
modes. Thus, M gives the desired isomorphism with some
probability amplitude CfNg. Conversely, it is easy to check
that any M with this final form commutes with the (de-)
excitation operator. ▪
The coefficients CfNg play the same role as the beam

splitter–parameter combinations (r3,
ffiffiffi
3

p
r2t, etc.) in

Eq. (2); with suitable normalization, jCfNgj2 is the
probability that states with initial particle numbers (NA,
NB) are mapped to states with output numbers (NC, ND).
Crucially, these coefficients depend on the local particle
counts, not on the states themselves. Following such maps
with local particle measurements N̂C ⊗ N̂D, we can
probabilistically realize the desired isomorphism for any
subsystem sizes. As foreshadowed by the example, any
unitary operation â†k → rĉ†k þ td̂†k, b̂†k → −t�ĉ†k þ r�d̂†k,
k ¼ 0, 1, leads to probabilistic mode mixing. In the
multimode situation, this generalizes to polarization-
independent passive optical networks. Theorem 1 can

also be formulated on the N-particle state space; see
Supplemental Material [44].
Extraction protocol.—Here we outline how one can

extract identical-particle entanglement with unit probability
using an asymptotic protocol. Take an arbitrary N-particle
state in mode A, jϕiniA ¼ P

N
n¼0 ϕnjn;N − niA, and a

desired bipartition size (NX, NY). The protocol goes as
follows: (i) Apply any nontrivial mode-mixing operation
M; (ii) Measure local particle numbers N̂C ⊗ N̂D. If
ðNC; NDÞ ¼ ðNX;NYÞ or (NY , NX), then the output state
is jϕoutiCD ¼ P

N
n¼0 ϕnjn;N − niðNX;NY Þ. Otherwise, repeat

step (i) with updated particle numbers ðN0
A; N

0
BÞ ¼

ðNC; NDÞ. For this protocol to work, we must show that
at any iteration, with local particle counts (NA, NB),
we have a nonzero probability to reach the desired goal
(NX, NY) within a bounded number of steps. In fact, any

nontrivial beam splitter has C1 ¼ CðNA; NB;N; 0Þ ¼ffiffiffiffiffiffiffiffiffi
ð N
NA
Þ

q
rNAð−t�ÞNB ≠ 0 and C2 ¼ CðN; 0;NX;NYÞ ¼ffiffiffiffiffiffiffiffiffi

ð N
NX
Þ

q
rNX tNY ≠ 0. Thus, with only two iterations, we

can guarantee an overall probability jC1C2j2 ≠ 0 of achiev-
ing the desired isomorphism. Asymptotically, we can
faithfully extract any desired entangled state. We empha-
size that during the extraction protocol, intermediate states
could have quantitatively more entanglement than the final
state. One should not interpret this as meaning that the
protocol does not extract all available entanglement.
Rather, we remember that the entanglement content is
relative to the choice of bipartition of the initial state; for
every choice, this protocol faithfully extracts the corre-
sponding entangled state.
Relation to spin squeezing.—These results reveal new

operational meaning for single-mode spin-squeezed states.
Squeezing information can be used to bound the expected
mode entanglement, even without performing the splitting.
Using only a few simple collective spin measurements
[12], we can obtain the two-particle reduced state ρpq,
which is the same for every pseudolabel pair. We can then
bound the output state’s entanglement using any monoga-
mous measure E:

EðρC∶DÞ≥ EðρC1∶DÞ≥
X
j

EðρC1∶Dj
Þ¼NDEðρC1∶D1

Þ; (7)

where the first relation follows from tracing out all qubits
in C but C1, the second represents monogamy, and the third
is from symmetry; a similar inequality holds for ND↔NC.
For a broad class of spin-squeezed states created by standard
methods, there is a quantitative relationship between the
spin-squeezing parameter ξ2 < 1 and the concurrence [50]
for any ρpq [51–54]. We can leverage this to bound the
tangle [55,56] (generalized concurrence), a measure which
quantifies the usefulness of a state for bipartite channel
discrimination [57]: τðρC∶DÞ ≥ maxfNC; NDg½1−ξ

2

N−1�2. Thus,
spin-squeezed states, and the squeezingparameter ξ2, acquire
new operational meaning thanks to our results.
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Conclusion.—We have shown that identical-particle
entanglement can be easily and faithfully extracted and
used as a resource for standard quantum information tasks.
Practically, such entanglement is naturally occurring and
quite robust [58–60]. In optics, the idea to use nonclassical
states andbeamsplitters to create entanglement has appeared
many times. However, because the second quantization
formalism is dominant, and because the particle super-
selection rules are not relevant for photons, the connection
between entanglement in a discrete identical particle basis
and beam-splitter generated entanglement was not previ-
ously uncovered. For massive particles, it is perhaps more
natural to beginwith theN-particle state space, but the notion
of splitting andmixingmodes is not as prevalent. Our results
illuminate new connections between entanglement, squeez-
ing, and indistinguishability in both scenarios.
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