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The nature of the behavior of an isolated many-body quantum system periodically driven in time has
been an open question since the beginning of quantum mechanics. After an initial transient period, such
a system is known to synchronize with the driving; in contrast to the nondriven case, no fundamental
principle has been proposed for constructing the resulting nonequilibrium state. Here, we analytically show
that, for a class of integrable systems, the relevant ensemble is constructed by maximizing an appropriately
defined entropy subject to constraints, which we explicitly identify. This result constitutes a generalization
of the concepts of equilibrium statistical mechanics to a class of far-from-equilibrium systems, up to now
mainly accessible using ad hoc methods.
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There has recently been significant progress in our
understanding of statistical mechanics based on the twin
concepts of equilibration, the approach of a large, closed
system’s state to some steady state [1–8], as well as of
thermalization, when this steady state depends only upon
a small number of quantities. Starting from ideas due to
Jaynes [9,10], Srednicki and Deutsch [1,2], and Popescu
et al. [11], both integrable and nonintegrable closed,
nondriven many-body systems have, thus, been shown to
thermalize [3,5,8].
On the other hand, the study of periodically driven

systems has also had a long history. Following early
foundational work by Shirley [12] and Sambe [13], sub-
stantial theoretical and experimental progress has recently
been made [14–22].
Here, we combine ideas from the two areas to extend the

concept of thermalization to the out-of-equilibrium case of
periodically driven systems. By devising a mapping of the
system to a set of effectively nondriven systems,we show that
a periodically driven system asymptotically approaches a
time-periodic steady state at long times (see, e.g., Ref. [23]
and the Supplemental Material [24]). Specializing to a
large class of integrable systems, we analytically show that
Jaynes’s entropy maximization principle [9,10] gives a
statisticalmechanical description of the long-time, synchron-
ized dynamics for infinite systems and study the approach
to this equilibrium state as a function of both the system size
and time. Finally, we explain how our proposed setup is
achievable with current experimental techniques.
Synchronization.—The starting point for our analysis is

the synchronization of the system with the driving, which
may be seen as follows.
Consider a time-periodic Hamiltonian ĤðtÞ ¼ Ĥðtþ TÞ

and denote the time evolution operator over a period
starting from time 0 ≤ ϵ < T by Ûðϵ; ϵþ TÞ. Taking
ℏ ¼ 1, we define an effective Hamiltonian Ĥeff via

exp ½−iĤeffT� ¼ Ûð0; TÞ: (1)

Ĥeff is a time-independent effective Hamiltonian that takes
an initial state at t ¼ 0 to the same final state at t ¼ T as
the real time-dependent Hamiltonian ĤðtÞ.
We concentrate on “stroboscopic” observations, that is,

observations at discrete points of time separated by a
period tn ¼ ϵþ nT for a given ϵ. The expectation value
of an arbitrary time-independent operator Ô at time t,
OðtÞ ¼ hψðtÞjÔjψðtÞi, is

OðtnÞ ¼< ψð0ÞjeiĤeffnTÔðϵÞe−iĤeffnT jψð0Þ > (2)

where ÔðϵÞ ¼ Û†ð0; ϵÞÔ Ûð0; ϵÞ. We have, thus, recast the
time evolution into evolution under a time-independent
Hamiltonian, at the price of introducing a set of new
operators ÔðϵÞ.
By analogy to a static quench [4,7] (see the Supple-

mental Material [24] for a discussion of the necessary
conditions), one can show that each series fOðtnÞ; n ¼
0; 1; 2;…g converges to a fixed value. This immediately
implies that the long-time behavior of the system is periodic
in time, i.e., synchronized.
Construction of the periodic ensemble.—We now come

to themainpart of ourworkwherewe show that Jaynes’s idea
of entropymaximization [4,5,9,10] remains valid away from
equilibrium for this class of models. In order to demonstrate
that this is correct, we restrict ourselves to a class of tractable
integrable Hamiltonians. For infinite systems, we show
analytically that this ensemble correctly reproduces all
correlation functions. For finite systems, we study the
approach to the thermodynamic limit in a spatially inhomo-
geneous system of hard-core bosons (HCBs).
The Hamiltonians we consider are of the form

ĤðtÞ ¼
X
i

½â†iMi;jðtÞâj þ â†iN i;jðtÞâ†j þ H.c.�; (3)

PRL 112, 150401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

0031-9007=14=112(15)=150401(5) 150401-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.150401
http://dx.doi.org/10.1103/PhysRevLett.112.150401
http://dx.doi.org/10.1103/PhysRevLett.112.150401
http://dx.doi.org/10.1103/PhysRevLett.112.150401


with the âi fermionic or bosonic operators, ½ai; a†j �� ¼ δi;j,
and M, N are complex matrices. In cases of interest, the
nonlinear, nonlocal transformation that brings the physical
Hamiltonian to this form maps local observables to highly
nonlocal, nonlinear functions of the â operators.
For Hamiltonians bilinear in the operators â, Ĥeff are

bilinear and may, therefore, be brought to the form

Ĥeff ¼
XL
p¼1

ωp ~a
†
p ~ap (4)

by a unitary transformation (L is the system size).
The operators ÎpðtÞ ≔ Ûð0; tÞ ~a†p ~apÛ†ð0; tÞ (of which
there are L) correspond to conserved quantities
hψðtÞjÎpðtÞjψðtÞi ¼ hψð0ÞjÎpð0Þjψð0Þi for all t and are
temporally periodic.
We now describe how to obtain the statistical ensemble

describing the long-time behavior of this system after a
number of periods have elapsed. Given the set fÎpðtÞg,
we construct the most general distribution maximizing
Shannon’s entropy in the space of periodic operators,
subject to the constraints given by the conservation laws.
The resulting “periodic Gibbs ensemble” (PGE) density
operator is

ρ̂PGEðtÞ ¼ Z−1 exp

�
−
X
p

λpÎpðtÞ
�

(5)

with the λp value fixed by requiring that
hψð0ÞjÎpð0Þjψð0Þi ¼ tr½ρ̂PGEð0ÞÎpð0Þ� and Z ¼
tr½ expð−PpλpIpÞ�, a (time-independent) normalization
factor. Operator ρ̂PGEðtÞ has the following two properties:
First, it correctly gives the conserved quantities:
tr½ ~a†p ~aqρ̂PGEðtÞ� ¼ δp;qhψðtÞjÎpðtÞjψðtÞi. Second, since

the Îp are periodic in time, it is itself manifestly periodic
with time: ρ̂PGEðtÞ ¼ ρ̂PGEðtþ TÞ.
Finally, we can analytically show that the PGE density

matrix exactly reproduces all correlation functions in the
thermodynamic limit; this somewhat lengthy but ultimately
elementary calculation is described in the Supplemental
Material [24]. This constitutes our central conceptual result.
Application to finite systems: numerical results.—Let us

now supplement the above exact and general results using
numerical simulations for specific, finite systems. While
the proof for the correctness of the PGE is strictly
applicable only in the thermodynamic limit, we shall see
that the deviation of finite systems from the PGE result
rapidly decreases with system size.
A number of different physical systems may be mapped

to Eq. (3) (see Supplemental Material [24]). Here, we
present numerical results for the experimentally relevant
case of HCBs subject to a simple potential, the Hamiltonian
for which reads

ĤbðtÞ ¼ −
1

2

X
i

JiðtÞb̂†i b̂iþ1 þ H.c.þ
X
i

ViðtÞb̂†i b̂i (6)

with the b̂i HCBs. The HCBs are described by operators
b̂ obeying bosonic commutation relations ½b̂i; b̂†j � ¼ δi;j,

with the additional hard-core condition b̂2i ¼ 0. A Jordan-
Wigner transformation b̂i ¼ âi

Q
j<ið−1Þn̂j with n̂j ¼

b̂†j b̂j ¼ â†j âj maps ĤbðtÞ to Eq. (3) with Mi;jðtÞ¼
−1

2
JiðtÞðδiþ1;jþδi−1;jÞþδi;jViðtÞ, N i;j ¼ 0 and fermionic

commutation relations for the â.
Here, we focus on a time-dependent superlattice

potential superposed on a quadratic potential, ViðtÞ¼
1
2
½ði−L=2Þ=lHO�2þΔð−1Þi cosðωtÞ and a time-dependent
hopping amplitude JiðtÞ ¼ J þ δJ cosðωtÞ with
ω ¼ 2π=T. The protocol we use is to prepare the system
in the ground state in the presence of a harmonic potential
Vð0Þ
i ¼ 1

2
½ði − L=2Þ=lHO�2, fixing lHO ¼ N. This allows

us to take the thermodynamic limit, since for large total
number of particles the dimensionless parameter [25]
~ρ ¼ Nb=lHO plays a role analogous to the density in the
uniform limit. Results with different system sizes but
constant ~ρ are therefore comparable.
At time t ¼ 0, the driving is switched on so that the

total Hamiltonian is ĤbðtÞ ¼ − 1
2
J
P

ib̂
†
i b̂iþ1 þ H.c.þP

iViðtÞb̂†i b̂i with ViðtÞ ¼ Vð0Þ
i þ Δð−1Þi cos ð2πt=TÞ.

Concentrating on the experimentally accessible momen-
tum distribution of the bosons n̂ðbÞðkÞ ¼ L−1P

i;jb̂
†
i b̂j×

exp½−2πkði − jÞL−1�, we use the numerical method used
in, among others, Ref. [26]; it consists of solving the
fermionic time-dependent problem and, at the end,
inverting the Jordan-Wigner transformation [27]. We begin
by demonstrating a number of possible periodic states,
corresponding to different parameters of the model. The
leftmost panel of Fig. 1 shows snapshots of the PGE
momentum distribution tr½ρ̂PGEn̂ðbÞðkÞ� at the beginning of
each period (ϵ ¼ 0) for different parameter values. We
emphasise that, away from the high-frequency regime, the
corresponding time-averaged Hamiltonian [16,28] is not an
appropriate description. As a striking example, the black
line shows a momentum distribution with peaks at the
edges of the Brillouin zone. Concentrating now on the
parameters corresponding to the cyan line, the central panel
shows the time evolution of the momentum distribution
over an entire period. Note that the system evolves through
states in which the momentum is peaked at different
locations of the Brillouin zone. Finally, the rightmost panel
shows three snapshots of the density distribution of the
same system at times indicated by the colored lines in the
central panel. The high spatial frequency oscillations and
the peaking of the density at the edges is also very different
from what would be obtained had the system been well
described by a time-averaged Hamiltonian, since the
time-averaged potential (shown in black) is smooth and
its potential is highest at the edges.
We next discuss the approach to the long-time periodic

state as a function of time and system sizes. After showing
that the stroboscopic values of observables approach, then
oscillate around, a constant value for each ϵ, we proceed
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to demonstrate that both this average value and the relative
magnitude of the oscillations away from it decay to zero
with increasing system size, in agreement with our ana-
lytical results for infinite systems. The approach is rapid:
within a few periods, the system is practically thermalized.
The main plot of Fig. 2 shows the stroboscopic approach

to the PGE state of the full bosonic momentum distribu-
tion, n̂ðbÞðk;mTÞ, for the parameters corresponding to the
black line in Fig. 1. The entire momentum distribution
approaches, then oscillates around, a period-independent
result. The inset focuses on the component n̂ðbÞðk ¼ π=2Þ,
showing the stroboscopic time evolution of its difference
from the value predicted by the PGE as a function of period,
showing the oscillations about the equilibrium value shown
by the heavy blue lines.
We now quantitatively study the approach to the PGE

limit as system size is increased. In Fig. 3, we plot the
average of the distance of the dynamical momentum dis-
tribution from its PGE value over a number of periods,
d̄ ¼ ðLNÞ−1 PnþN

m¼n

P
k jn̂ðbÞðk;mTÞ − n̂PGEðkÞj, as a func-

tion of the inverse system size 1=L. These plots are for large
n ¼ 40L andN ¼ 20L in order to to allow plenty of time for
equilibration. From Fig. 3, we conclude that the average of
the momentum distribution approaches the PGE result, while
fluctuations away from it on average become smaller with
increasing system size: as L → ∞, the momentum distri-
bution rapidly approaches the PGE periodic steady state.

In conclusion, we have shown that the real dynamics
rapidly approaches the thermodynamic-limit and long-time
results for relatively small systems and short times.
Experiments.—We now turn to the question of the

experimental implementation of the specific system we
have studied. To realize our proposal, three ingredients are
required: A superlattice potential, periodic modulation,
and HCBs.
Experiments using a superlattice potential are already

available [29], while periodic modulation of the lattice
depth [18,30] is a standard technique. In particular, peri-
odically driving a superlattice potential is described in
Ref. [21]. Finally, the HCB regime may be achieved via
confinement-induced resonance, which involves manipu-
lating the radial harmonic potential strength [31,32].
The example we have studied above is, therefore,

accessible with current experimental techniques.
Conclusions and outlook.—For a large class of inte-

grable periodically driven systems, we have shown that a
periodic steady state is attained at long times. To describe
this state, we have constructed a periodic version of the
generalized Gibbs ensemble (GGE) [5], commonly intro-
duced in connection with quenches in integrable models.
We have provided an analytical demonstration that it
exactly reproduces the periodic steady state in the thermo-
dynamic limit. We also provide numerical evidence
of rapid convergence (i) to the thermodynamic-limit

FIG. 1 (color online). Characterization of the synchronized steady state. Left: Stroboscopic momentum distribution,
n̂ðkÞ ¼ L−1P

i;jb̂
†
i b̂j exp½−2πikði − jÞL−1�, demonstrating the wide range of behavior that occurs for varying parameters. The points

correspond to snapshots of the dynamical evolution at late times (t ¼ 490T) for L ¼ 200, while the continuous lines correspond to the
PGE prediction. From top to bottom at the extreme left end of the plot, the amplitudes of the superlattice potential, frequency, and filling
factor (Δ, δJ, ω, ν) are (0.6, 0.5, 1.6, 3=4) (black, dot-dashed), (4, 0.5, 1.5, 1=3) (yellow, dashed), (4, 0.75, 2, 1=3) (cyan, full), (0.6, 0.5,
2, 1=4) (magenta, dotted), and ϵ ¼ 0. The next two panels correspond to the parameters for the cyan full line. Center: Expectation value
of the momentum distribution n̂ðkÞ of the bosons during a single period in the synchronized state as a function of the time in the period ϵ.
The three lines on the time-momentum plane indicate the times ϵ=T ¼ 0, 0.15, 0.25 for which density distributions are shown in the
rightmost panel. The momentum distribution undergoes qualitative changes: at some points of the period, it has a single maximum
at k ¼ 0 while at others it acquires double maxima at the edges of the Brillouin zone. Right: Each trace shows the expectation value of
the density of the bosons n̂bi ¼ b̂†i b̂i at the time indicated in the middle panel by the line of the same color, for a lattice size L ¼ 100
and offset for better visibility. The black line indicates the time average of the applied potential; the density peaks at the edges despite
the potential being highest there indicating a strongly nonequilibrium situation.
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prediction with increasing system size and (ii) to the steady
state with time.
It is now natural to ask whether, and how, our results can

be extended to a nonintegrable situation. Our PGE is
analogous to the GGE for nondriven systems [5]; the
analogy would suggest that, for a closed, nonintegrable,
periodically driven system, a subsystem for which the rest
of the system plays the role of a bath might be described
by the periodic density matrix operator exp½ĤeffðϵÞ ¼
Ûð0; ϵÞĤeffÛ

†ð0; ϵÞ�, analogous to the Gibbs ensemble
for nondriven systems [11]. Unfortunately, there are several
issues with this; chief amongst them are that ĤeffðϵÞ is not a
local operator in general and, more seriously, that ĤeffðϵÞ is
not uniquely defined (its eigenvalues are only defined
modulo 2π=T— we do not use the eigenvalues and,
therefore, circumvent this problem in our work). We are
currently investigating possible resolutions of these con-
ceptual issues.
Our work here should be compared to the usual situation

for out-of-equilibrium systems, where each case has to be
studied individually using ad hoc techniques tailored to
the specific problem at hand. In contrast, for this type of
periodically driven system, the general framework of
maximum entropy statistical mechanics applies as is. It
not only gives the correct ensemble but also allows the
detailed computation of physical observables. We hope
that this work will motivate the search for further such
“thermodynamic” principles governing driven systems in
all generality.
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