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The proper addition of shortcuts to a regular substrate can lead to the formation of a complex network
with a highly efficient structure for navigation [J. M. Kleinberg, Nature 406, 845 (2000)]. Here we show
that enhanced flow properties can also be observed in these small-world topologies. Precisely, our model is
a network built from an underlying regular lattice over which long-range connections are randomly added
according to the probability, Pij ∼ r−αij , where rij is the Manhattan distance between nodes i and j, and the
exponent α is a controlling parameter. The mean two-point global conductance of the system is computed
by considering that each link has a local conductance given by gij ∝ r−Cij , where C determines the extent of
the geographical limitations (costs) on the long-range connections. Our results show that the best flow
conditions are obtained for C ¼ 0 with α ¼ 0, while for C ≫ 1 the overall conductance always increases
with α. For C ≈ 1, α ¼ d becomes the optimal exponent, where d is the topological dimension of the
substrate. Interestingly, this exponent is identical to the one obtained for optimal navigation in small-world
networks using decentralized algorithms.
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The Laplacian matrix operator is a general description
for systems presenting two essential properties: (i) they
obey local conservation of some load, and (ii) their currents
of load are linearly dependent on some field [1]. Since
such conditions are very often observed, this operator can
be applied to several different problems in Physics,
including diffusion [2,3], wave propagation [4], solving
the Schrödinger equation in arbitrary graphs [5], dielectric
breakdown [6], brittle fracture [7,8], Darcy’s flow [9] and
classical electrical transport [10,11], among others. In these
problems, one is frequently interested in the stationary
state, where currents in each edge of a given network can be
determined using local conservation laws. In the field of
complex networks, in particular, the Laplacian operator has
been employed as a conceptual approach for determining
the nature of the community structure in the networks [12],
in the context of network synchronization [13], as well as to
study network flow [14–19].
Given a regular network as an underlying substrate, it has

been shown that the addition of a small set of random long-
range links can greatly reduce the shortest paths among its
sites. In particular, if the average shortest path ls grows
slowly with the network size N but the local clustering
coefficient Cs grows fast, typically when ls ∼ logðNÞ and
Cs ≫ N−1, the network is called a small world [20–22]. If
one considers the effect of constraining the allocation of the
long-range connections with a probability decaying with
the distance, Pij ∼ r−αij , results in an effective dimension-
ality for the shortest paths that depends on the value of α
[23]. For the case in which the regular underlying lattice is
one-dimensional, the small-world behavior has only been
detected for α < 2, with ls reaching a minimum at αopt ¼ 0

[23]. The two-dimensional case was also investigated [24],
yielding similar results.
The situation is much more complex if one does not have

the global information of all the short-cuts present in the
network. As a consequence, the traveler does not have
a priori knowledge of the shortest path. Optimal navigation
with local knowledge and the presence of long-range links
was studied byKleinberg [25]. Surprisingly, the small-world
features of the network can only be efficiently accessed if
the exponent is precisely set at α ¼ d, where d is the
topological dimension of the substrate. It is then claimed
that this condition is optimal due to the presence of strong
correlations between the structure of the long-range con-
nections and the underlying lattice, leading to the formation
of “information gradients” that allow the traveler to find the
target. Later, it was shown that, by imposing a cost constraint
to the long-range connections, results in αopt ¼ dþ 1, for
both local and global knowledge conditions [26].
A question that naturally arises from these navigation

studies is how efficient small-world networks are for trans-
port phenomena that typically obey local conservation laws.
Here we show that enhanced Laplacian flow properties can
also be observed for networks built by adding long-range
connections to an underlying regular lattice, in the same
fashion as previously proposed for navigation through
small-world geometries [24–28]. Our model consists of N
nodes arrangedona circle, and connected to their twonearest
neighbors. Long-range connections [29] are added to the
regular substrate by ensuring that each node i receives a new
link to a node j randomly chosen among those N − 3

remaining nodes according to the probability, Pij ∼ r−αij ,
where α is an arbitrary exponent, and rij is the Manhattan
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distance, namely, the minimum number of links separating
nodes i and j. The larger the parameter α, the shorter are the
long-range links. In fact, given this power-law distribution,
forα < d, the average link length growswith the systemsize,
hri ∼ N, while for d < α < dþ 1, hri ∼ Ndþ1−α, and for
α > dþ 1, hri ∼ N0. In the limiting cases, one may expect
a logarithmic dependence, hri ∼ N= logðNÞ for α ¼ d, and
hri ∼ logðNÞ for α ¼ dþ 1.
Once the network is built, we associate each link to

an Ohmic resistor and a unitary global current is induced
between a pair of sites A and B in the system (see Fig. 1).
In order to compute the local potential Vi, we solve
Kirchhoff’s law at each site i [30],

X

j

gijðVi − VjÞ ¼ 0; i ¼ 1;…; N;

with the summation running over all sites connected to i,
and gij being the link conductance between i and j. The
inlet and outlet currents are also considered in the calcu-
lation of the local potentials at sites A and B, respectively.
The global conductance for a given realization, which
depends on the chosen pair of sites A and B, is computed as
G≡ 1=ΔV, where ΔV ¼ VA − VB, so that a mean global
conductance hGi, between any two sites of the network, is
then obtained by averaging over different pairs of sites [31]
and different realizations of the network.
Here we assume that the conductance of each link

depends on the distance between its ends in the form,

gij ¼ r−Cij ;

where the exponent C gauges the way long-range con-
nections impact the flow, as C increases the contribution of

longer connections to flow is attenuated. We focus pri-
marily on two particular cases, namely, C ¼ 0 and 1, but
other cases with different values of C are also investigated
here. In the case of C ¼ 1, known as Pouillet’s law [32], the
conductance of a long-range connection with Manhattan
distance r is equivalent to an effective conductance of r
short-range links in series, hence one should expect long-
range links contributing to transport as much as short-range
links. Accordingly, for C < 1 (C > 1), preferential flow
should occur through long-range (short-range) links.
As shown in Fig. 2 (inset), the network conductance hGi

decays monotonically with α for C ¼ 0, regardless of the
system size N, since the shortcut links in this case parti-
cipate very actively in the flow. The maximum conductance
is therefore obtained at α ¼ 0. The main panel of Fig. 2
shows, however, that the average conductance calculated
for C ¼ 1 behaves nonmonotonically with the exponent α,
with a maximum value observed at α ¼ 1.
In Figs. 3(a) and 3(b) we show the dependence of the

average network conductance on the network size N for
C ¼ 1 and 0, respectively. The results in Fig. 3(a) indicate
that, except for α ¼ 1, a typical power-law behavior is
observed, hGi ∼ N−β, with an exponent β that depends
strongly on the parameter α controlling the length of long-
range connections. In this case, the local conductance is
inversely proportional to the distance. As presented in the
inset of Fig. 3(a), the exponent β starts from 0.46, at α ¼ 0,
and falls to a minimum as α approaches unity. For α > 1,
the exponent β again grows continuously. In the limit of
large values of α, the added links always connect close
sites, hri ∼ N0. As a consequence, the system should
behave as a regular lattice, hGi ∼ N= logðNÞ, regardless
of the value of C. In the case of C ¼ 0, all links have
identical resistances and a power-law behavior is always
observed, as shown in Fig. 3(b). The inset of Fig. 3(b)

FIG. 1 (color online). Network built on a one-dimensional
underlying lattice of nearest neighbors (short-range) connections
(in blue) and long-range connections (in red). Each connection
has a local conductance given by gij. A unity global current is
applied through the system between nodes A and B so that a
global conductance, GAB, can be computed. We obtain the
average conductance, hGi, by calculating GAB over different
pairs of sites AB and several network realizations.
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FIG. 2 (color online). Mean effective conductance versus the
exponent α for C ¼ 1 (main graph) and C ¼ 0 (inset), in one-
dimensional substrates, and for different system sizes. The
maximum conductance is obtained at α ¼ 1, in the first case
(local conductances inversely proportional to the length), and at
α ¼ 0, in the second case (conductances are independent of link
length). The error bars are smaller than the symbols.
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shows that the exponent β vanishes for small values of α,
meaning that the average conductance becomes indepen-
dent of N. However, as α increases, the conductance
exponent approaches unity, the analytical result for a
regular one-dimensional lattice.
Going back to the optimal flow condition, namely,C ¼ 1

and α ¼ 1, since logarithmic corrections are also present,
an exponent β → 0þ is expected. To support this con-
jecture, we show in Fig. 4 that the average conductance in
this particular case follows a power law of the logarithm of
N, hGi ∝ ðlog10 NÞ−γ , with an exponent γ ¼ 2.16� 0.02.
Next, we investigate the optimal flow conditions for

small-world networks built over two-dimensional sub-
strates, namely, L × L square lattices. In the case where
all local conductances are equal, C ¼ 0, we obtain αopt ¼ 0
(see Fig. 1 of the Supplemental Material [33]), which
is compatible with the behavior previously observed for
one-dimensional substrates (see the inset of Fig. 2).

As displayed in Fig. 5(a), our results show that, in the
case where the local conductance is inversely proportional
to the link length, C ¼ 1, the maximum values of the
average network conductance hGi are obtained at α ≈ 2.7
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FIG. 3 (color online). Dependence on size of the mean effective
conductance for different values of α. In (a) we show the case in
which local conductances are inversely proportional to the length
(C ¼ 1). The average conductances generally follow a power-law
behavior, hGi ∼ N−β, except for the optimal condition α ¼ 1,
where hGi behaves approximately as a power law of the
logarithm of N, as depicted in Fig. 4. The exponents resulting
from the least-squares fitting to the data of the scaling functions
are shown in the inset, except for the case α ¼ 1 (dashed line).
A nonmonotonic behavior can be clearly observed. The same is
shown in (b), but for C ¼ 0. In this case, the average conductance
always obeys a power law. The inset shows that the exponent β
increases monotonically with α.
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FIG. 4 (color online). For C ¼ 1 and α ¼ 1, the global
conductance follows a power-law of the logarithm of N,
hGi ∝ ðlog10 NÞ−γ . The least-squares fitting to the data points
for α ¼ 1 gives an exponent γ ¼ 2.16� 0.02.
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FIG. 5 (color online). In (a), we show the dependence on α of
the average global conductance hGi of networks built by adding
long-range connections on two-dimensional regular lattices, for
the case of C ¼ 1. The maximum values of hGi are obtained at
α ≈ 2.7 for L ¼ 64, and at α ≈ 2.4 for L ¼ 128. For all points, the
error bars are smaller than the symbols. The dependence of αopt on
1=L is shown in (b). The linear regression (red solid line) to the
data points suggests that αopt → 2 as L increases according to
αopt ¼ 1.998þ 47.873L−1. For each value of L, αopt is obtained
with a relative error equal to 10−2.
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for L ¼ 64, and at α ≈ 2.4 for L ¼ 128. In Fig. 2 of the
Supplemental Material [33], we present maps with the
spatial distributions of effective conductances between
the central node and every other node in typical networks
of size L ¼ 128, calculated for different values of α. The
plot for α ¼ 2.4 notably shows increased values of con-
ductance over the whole network. However, the finite-size
scaling analysis shown in Fig. 5(b) clearly indicates that
αopt → 2 as the system size L increases. More precisely, the
linear regression of αopt versus 1=L gives αopt ¼ 1.998þ
47.873L−1. These results for two-dimensional substrates,
together with those for one-dimensional ones, give support
to the conjectures that αopt ¼ 0 for C ¼ 0, and αopt ¼ d
for C ¼ 1.
To explore more deeply the phenomenon beyond the

Pouillet’s law (C ¼ 1), we now study in detail the depend-
ence on the parameter C of the average global conductance
calculated for networks built on one-dimensional sub-
strates. Note that, in the absence of long-range connections,
the effective conductance between any pair of sites grows
linearly with the distance r. That is, for C > 1, these
effective conductances are always larger than the conduc-
tances of their long-range connections in parallel. In this
case, therefore, long-range connections do not play the role
of shortcuts. For C > 0, the longer the added connections,
stronger should be their effect on the global conductance.
On the other hand, the longer the connections, more resis-
tive they are, with less impact on the effective conductance.
These competing effects are responsible for the observed
nonmonotonicity of the average conductance with the
exponent α. Such a conclusion is supported by the results
shown in Fig. 6, where an optimal α is observed for
0.2 ≤ C < 1.8. We cannot, however, exclude the possibility
that finite size effects are hiding the optimum condition
in C ¼ 1.8.

Our results present an striking connection with the
problem of navigation in small-world networks. There
we have αopt ¼ 0 for global knowledge [24] and αopt ¼ d
for local knowledge [25]. Here we obtain the same optimal
conditions for equal link conductances and for conduc-
tances that decrease with the link length, respectively. In
a sense, solving Kirchhoff’s laws involves more global
knowledge than finding the minimum path, since the flux
balances are susceptible to small disturbances, like the
addition or removal of a single conducting link anywhere in
the lattice. Therefore, it is somewhat surprising that we
obtain for C ¼ 1 the same optimal condition as in the case
of navigation with local knowledge. The key feature of this
result is the way the parameter α controls the length of
long-range connections. If α is small, long connections
become frequent. However, since C > 0, their associated
conductances are low. On the other hand, if α is too large,
the conductances of added connections do not vanish, but
their lengths are too small to impact the scaling.
In conclusion, our results showed in what conditions

enhanced flow can be observed in small-world networks.
Long-range interactions are known to strongly affect the
physical properties of real systems. Often the amount of
these interactions is parametrized either by considering a
vanishing strength for the interaction or a vanishing
probability for establishing it. Here we considered the
combined effect of these two conditions by associating
power laws for both (i) the probability distribution of
distances for long-range links, Pij ∼ r−αij , and (ii) their
corresponding conductances, gij ∼ r−Cij . For C ¼ 0, the
longer the link, the stronger its impact on the flow, leading
to αopt ¼ 0. For C > 2, longer random links have decreas-
ingly small conductances. In this regime, increasing the
probability of longer connections is detrimental to the
conductivity, and we obtained αopt → ∞. For intermediate
values, 0 < C ≪ 2, we observed an optimal condition at
αopt ¼ d. Interestingly, the same optimal conditions were
verified for the problems of navigation with global knowl-
edge [24], αopt ¼ 0, and local knowledge [25], αopt ¼ d.
Moreover, in the case of Pouillet’s law, C ¼ 1, we observed
that, in the optimal condition, the conductance vanishes
slowly with the size of the system hGi ∝ ðlog10 NÞ−γ , with
γ ¼ 2.16 for one-dimensional substrates. Finally, it is
interesting to note that the conductance between two sites
A and B in a network, for C ¼ 0, corresponds to the escape
probability of a random walk, i.e., the probability that a
diffusing particle, starting at A, reaches B before returning
to A [34]. Therefore, our results for C ¼ 0 can also be
used to interpret first-passage processes of random walks
through networks.
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FIG. 6 (color online). Dependence on α of the average global
conductance of the network for different values of C. The
underlying substrate is a one-dimensional regular lattice with
N ¼ 2048. The optimal global conductance is found for three
different regimes of C: for C ¼ 0, αopt ¼ 0; for 0.2 ≤ C < 1.8,
αopt ¼ 1; and for C ≥ 1.8, the conductances always grow with α;
namely, the optimal condition is α → ∞.
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