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We present a method to control the position as a function of time of one-dimensional traveling wave
solutions to reaction-diffusion systems according to a prespecified protocol of motion. Given this protocol,
the control function is found as the solution of a perturbatively derived integral equation. Two cases are
considered. First, we derive an analytical expression for the space (x) and time (t) dependent control
function fðx; tÞ that is valid for arbitrary protocols and many reaction-diffusion systems. These results are
close to numerically computed optimal controls. Second, for stationary control of traveling waves in one-
component systems, the integral equation reduces to a Fredholm integral equation of the first kind. In both
cases, the control can be expressed in terms of the uncontrolled wave profile and its propagation velocity,
rendering detailed knowledge of the reaction kinetics unnecessary.
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A variety of approaches has been developed for the
purposeful manipulation of reaction-diffusion (RD) systems
as, e.g., the application of feedback-mediated control loops
with and without delays, external spatiotemporal forcing, or
imposing heterogeneities and geometric constraints on the
medium [1]. For example, feedback stabilization of propa-
gating unstable wave segments to a constant size and shape
and feedback-mediated control of spiral wave dynamics
were demonstrated in experiments with the light-sensitive
Belousov-Zhabotinsky (BZ) reaction [2]. Two feedback
loops were used to stabilize unstable wave segments and
to guide their propagation direction [3]. Position control, or
dragging, of a traveling chemical pulse [4] on an addressable
catalyst surface [5] was accomplished experimentally by a
moving, localized temperature heterogeneity. Dragging of
chemical fronts and phase interfaces as well as targeted
transfer of nonlinear Schrödinger pulses by moving hetero-
geneities was studied in Ref. [6].
Many control methods rely on extensive knowledge

about the system to be controlled. Feedback control
necessitates continuous monitoring of the system, while
optimal control [7] requires full knowledge of the under-
lying partial differential equations (PDEs) governing the
system’s evolution in time and space.
In this Letter we propose a method that partially over-

comes the aforementioned difficulties and still compares
favorably with a competing control method, namely opti-
mal control. We consider the problem to control the
position over time of one-dimensional traveling waves
(TWs) by spatiotemporal forcing. The starting point is a
system of RD equations

∂tu ¼ D∂2
xuþRðuÞ þ ϵGðuÞfðx; tÞ; (1)

where D is a diagonal matrix of constant diffusion coef-
ficients, f is a spatiotemporal perturbation, G is a (possibly
u-dependent) coupling matrix, and R is the nonlinear

reaction kinetics. The unperturbed (ϵ ¼ 0) solution
UcðξÞ, ξ ¼ x� ct, is assumed to be a TW, stationary in
the reference frame comoving with velocity c, so that

D∂2
ξUcðξÞ þ c∂ξUcðξÞ þR(UcðξÞ) ¼ 0. (2)

The eigenvalues of the linear operator

L ¼ D∂2
ξ þ c∂ξ þDR(UcðξÞ) (3)

determine the stability of the TW, where DR(UcðξÞ)
denotes the Jacobian matrix of R evaluated at the TW.
We assume Uc to be stable. Therefore the eigenvalue of L
with the largest real part is λ0 ¼ 0, and the Goldstone mode
WðξÞ ¼ U0

cðξÞ, also called the propagator mode, is the
corresponding eigenfunction. Because L is in general not
self-adjoint, the eigenfunctionW†ðξÞ of the adjoint operator
L† to eigenvalue zero, the so-called response function, is not
identical to WðξÞ. Expanding Eq. (1) with u ¼ Uc þ ϵv up
to OðϵÞ yields a PDE ∂tv ¼ Lv þ Gf. Its solution v
can be expressed in terms of eigenfunctions wi of L as
vðξ; tÞ ¼ P

iaiðtÞwiðξÞ with expansion coefficients ai ∼R
t
t0
d~teλiðt�~tÞbð~tÞ and b a functional of f involving eigen-

functions of L† (see the Supplemental Material [8]).
By multiple scale perturbation theory for small ϵ,

the following equation of motion (EOM) for the position
ϕðtÞ of the TW in the presence of the spatiotemporal
perturbation f can be obtained:

_ϕ ¼ c� ϵ

Kc

Z
∞

�∞
dxW†TðxÞG(UcðxÞ)fðxþ ϕ; tÞ (4)

with constant Kc ¼
R
∞
�∞ dxW†TðxÞU0

cðxÞ and initial con-
dition ϕðt0Þ ¼ ϕ0. For monotonically decreasing front
solutions, we define its position as the point of steepest
slope, while for pulse solutions it is the point of maximum
amplitude of an arbitrary component.
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The EOM (4) only takes into account the contribution of
the perturbation f, which affects the position of the TW.
Adding to the TW a small term proportional to the
Goldstone mode slightly shifts the TW because (for details
compare the Supplemental Material [8])

Ucðx� ctÞ þ ϵp∂xUcðx� ctÞ ≈ Ucðx� ctþ ϵpÞ. (5)

Due to the orthogonality of eigenmodes wi to different
eigenvalues λi, the Goldstone mode alone accounts for
propagation, while all other modes account for the defor-
mation of the wave profile Uc. The spectral gap d > 0, i.e.,
the separation between λ0 ¼ 0 and the real part of the next
largest eigenvalue, characterizes the deformation relaxation
time scale. The larger d is, the faster is the decay of all
deformation modes for large times as long as the pertur-
bation f remains bounded in time. Secular growth of the
expansion coefficient a0 arising even for bounded pertur-
bations is prevented by assuming that p depends on a
slow time scale T ¼ ϵt and applying a solvability con-
dition. The EOM (4) must be seen as the first two terms of
an asymptotic series with bookkeeping parameter ϵ [9]. In
the following we set ϵ ¼ 1 and expect Eq. (4) to be accurate
only if the perturbation f is sufficiently small in amplitude.
For a detailed derivation and applications of Eq. (4)
compare Refs. [10] and [11], respectively. Methods closely
related to the derivation of the EOM (4) are, e.g., phase
reduction methods for limit cycle solutions to dynamical
systems [12] and the soliton perturbation theory [13]
developed for nonlinear conservative systems supporting
TWs as, e.g., the Korteweg–de Vries equation.
In this Letter, we do not perceive Eq. (4) as an ordinary

differential equation for the position ϕðtÞ of the wave under
the given perturbation f. Instead, Eq. (4) is viewed as an
integral equation for the control function f. The idea is to
find a control that solely drives propagation in space
according to an arbitrary given protocol of motion ϕðtÞ.
Simultaneously, we expect f to prevent large deformations
of the uncontrolled wave profile UcðξÞ. Expressed in the
language of eigenmodes of L, we search for a control f that
excites the Goldstone modeU0

cðξÞ in an appropriate manner
and minimizes excitation of all modes responsible for the
deformation of the wave profile. We assume that the wave
moves unperturbed until reaching position ϕ0 at time t0,
upon which the control is switched on.
A general solution of the integral equation Eq. (4) for the

control f with given protocol of motion ϕðtÞ is

fðx; tÞ ¼ ðc� _ϕÞKc

Gc
G�1(Ucðx� ϕÞ)hðx� ϕÞ; (6)

with constant Gc ¼
R
∞
�∞ dxW†TðxÞhðxÞ. Here G�1 denotes

the matrix inverse to G. The profile G�1h of the control f is
comoving with the controlled wave while the time depen-
dent coefficient c� _ϕ determines the control amplitude.
Equation (6) contains a so far undefined arbitrary function

hðxÞ. A control proportional to the Goldstone mode U0
c

shifts the TW as a whole, simultaneously preventing large
deformations of the wave profile (see the Supplemental
Material [8]). Therefore, in the following we choose
hðxÞ ¼ U0

cðxÞ, i.e.,
fðx; tÞ ¼ ðc� _ϕÞG�1(Ucðx� ϕÞ)U0

cðx� ϕÞ. (7)

BecauseKc ¼ Gc in this case, the solution does not contain
the response function W†.
In the examples discussed below, the given protocol ϕðtÞ

is compared with position over time data obtained by
numerical simulations of the controlled RD system sub-
jected to no-flux or periodic boundary conditions and
Ucðx� ϕ0Þ as the initial condition. Furthermore, the result
(7) is compared with optimal control solutions obtained by
numerically minimizing the constrained functional on the
spatiotemporal domain Q [7]

J ¼ 1

2

Z Z
Q
dxdt∥u� ud∥

2 þ λ

2

Z Z
Q
dxdt∥f∥

2

. (8)

Here, λ is a small (≈10�6) regularization parameter and u is
constrained to be a solution of the controlled RD system (1).
ud denotes an arbitrary desired spatiotemporal distribution,
which wewant to enforce onto the system. For the purpose of
position control, ud is TW shifted according to the protocol ϕ

udðx; tÞ ¼ Uc(x� ϕðtÞ). (9)

The coupling matrix G depends upon the ability to control
system parameters in a spatiotemporal way. In general, if
Rðu;pÞ depends on controllable parameters p, we sub-
stitute p → pþ ϵf, expand in ϵ, and define the coupling
matrix by GðuÞ ¼ ∂Rðu;pÞ=∂p. As an example, we
consider an autocatalytic chemical reaction mechanism

proposed by Schlögl, A1 þ 2X⇌
kþ
1

k�
1

3X, X⇌
kþ
2

k�
2

A2 [14].

Under the assumption that the concentrations c1=2 ¼
½A1=2� of the chemical species A1=2 are kept constant in
space and time, a cubic reaction rate RðuÞ ¼ kþ1 c1u

2 −
k−1 u3 − kþ2 uþ k−2 c2 dictates the time evolution of the
concentration u ¼ ½X�. We assume that the concentrations
c1=2 can be controlled spatiotemporally, i.e., c1=2 → c1=2 þ
ϵfðx; tÞ. Control by c2 will be additive with GðuÞ ¼ k�2 ,
while for control via c1 the spatiotemporal forcing couples
multiplicatively to the RD kinetics and GðuÞ ¼ kþ1 u

2.
A different example for position control, realized exper-
imentally in Ref. [4], exploits the dependency of the rate
coefficients k�1=2 on temperature T according to the
Arrhenius law k ∼ e�E=ðkBTÞ. Substituting T → Tþ
ϵfðx; tÞ and expanding in ϵ yields the coupling function
GðuÞ. In the bistable parameter regime, the unperturbed
Schlögl model has an analytically known traveling front
solution Uc connecting the stable and the metastable
homogeneous steady state as x → �∞ [14]. Suppose we
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want to move the front periodically back and forth in a
sinusoidal manner via a spatiotemporal control of param-
eter c1. Figure 1 (left) shows that the numerically obtained
front position follows the protocol very closely. The
maximum enforced front velocity, maxt _ϕðtÞ ¼ 7.854, is
much larger than the velocity c ¼ 0.662 of the uncontrolled
front, compare Fig. 1 (right).
Nowwe apply position control to the stable traveling pulse

solution of the FitzHugh-Nagumo (FHN) equations [15]

∂tu ¼ Du∂2
xuþ f1ðuÞ � vþ ϵðG11fu þ G12fvÞ;

∂tv ¼ Dv∂2
xvþ ~ϵðu� δÞ � ~ϵγvþ ϵðG21fu þ G22fvÞ; (10)

where f1 ¼ 3u� u3 and Gij denote the components of the
coupling matrix G. As an example, we consider an accel-
erating protocol ϕðtÞ ¼ ctð1þ t=4Þ. We assume that two
additive parameters can be controlled independently. For
the choice G ¼ ð 1

1=2
0
1
Þ, G is invertible. The obtained control

function as well as the controlled pulse profile are close to
the corresponding results obtained by an optimal control,
see Fig. 2.
If the coupling matrix G is not invertible, Eq. (7) for the

control cannot be used. Because the inhibitor kinetics is
linear in v, Eq. (10) can be written as a single nonlinear
integrodifferential equation (IDE) for the activator u

∂tu¼Du∂2
xuþ f1ðuÞ �K(~ϵðu� δÞ þ ϵfv)�K0v0 þ ϵfu.

(11)

K and K0 are integral operators, involving Green’s func-
tion, of the inhomogeneous linear PDE for the inhibitor v
with initial condition vðx; t0Þ ¼ v0ðxÞ

∂tv�Dv∂2
xvþ ~ϵγv ¼ ~ϵðu� δÞ þ ϵfv. (12)

We contrast Eq. (11) with the equation obtained from
Eq. (11) by substituting fu → ~fu, fv → 0. Comparing the

control terms yields the control ~fu acting solely on the
activator equation

~fu ¼ �Kfv þ fu; (13)

where fu and fv are given by Eq. (7) with G ¼ 1. We apply
the control ~fu with a sinusoidal protocol to a FHN pulse.
The activator’s maximum follows the protocol closely,
see the bottom right of Fig. 3. Comparing the result for
~fu, Eq. (13), with an optimal control result reveals good
overall agreement (bottom left of Fig. 3). However, for both
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FIG. 1 (color online). Periodic acceleration and deceleration of
a Schlögl front realized by multiplicative control. Left: the
numerically obtained front position (red dashed line) is in
excellent agreement with the protocol of motion ϕðtÞ ¼ B0 þ
A sin ð2πt=T þ B1Þ (black solid line). B0=1 are determined by
ϕðt0Þ ¼ ϕ0, _ϕðt0Þ ¼ c so that the protocol is smooth at t ¼ t0.
Right figure shows velocities. See S1 in the Supplemental
Material [8] for a movie.
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FIG. 2 (color online). Snapshot of position control of a FHN
pulse with an invertible coupling matrix G taken from movie S2
in the Supplemental Material [8]. Results by analytical control
(black solid) agree very well with results obtained by optimal
control (red dashed). Clockwise from top left: activator u,
inhibitor v, controls fu, fv.
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FIG. 3 (color online). Snapshot of position control of a FHN
pulse with a non-invertible coupling matrix G. The control ~fu
(bottom left) acts solely on the activator equation. The controlled
inhibitor pulse profile (top right) is much more deformed than the
activator pulse profile (top left). Shown are results of optimal
(red dashed) and analytical control (black solid). Bottom right:
Analytical protocol (black solid) and numerically obtained
position over time data for the maximum activator value of
the controlled RD system (red dashed). See movie S3 [8].
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control methods the inhibitor profile (top right) is largely
deformed although the activator profile remains compa-
rably unaffected (top left). Reduction of the RD equations
to a single IDE and thereby derivation of a control is
possible for, but not restricted to, all models of the form
(see the Supplemental Material [8])

∂tu ¼ Du∂2
xuþ fðu; v1;…; vnÞ þ ϵfu;

∂tvi ¼ Di∂2
xvi þ hiðuÞvi þ giðuÞ þ ϵfi; i ∈ 1;…; n.

(14)

This class includes Hodgkin-Huxley type models (with
Di ¼ 0) for the action potential propagation in neuronal
and cardiac tissue [16,17]. The modified Oregonator model
describing the light-sensitive BZ reaction [18] is not of the
form of Eq. (14) but can nevertheless be written as a single
IDE. We present position control of chemical concentration
waves in the photosensitive BZ reaction applying actinic
light of space-time dependent intensity to the reaction in the
Supplemental Material S6 [8].
In many experiments, a stationary control fðxÞ is

much less demanding to realize than a spatiotemporal
control fðx; tÞ. For single component RD systems, we
can formulate a Fredholm integral equation of the first kind
for fðxÞ

gðϕÞ ¼ cKc �
Kc

T 0ðϕÞ ¼
Z

∞

�∞
dxKðϕ� xÞfðxÞ; (15)

with kernel KðxÞ ¼ e�cx=DU0
cð�xÞG(Ucð�xÞ) and inho-

mogeneity g. We introduced the inverse function T ¼ ϕ�1

and used the general expression for the adjoint Goldstone
mode for single component systems W†ðxÞ ¼ ecx=DU0

cðxÞ.
Equation (15) can be solved with the help of the con-
volution theorem for the two-sided Laplace transform [19],
see the Supplemental Material [8] for details.
As an example, we choose a protocol that drives the

propagation velocity to zero according to

_ϕðtÞ¼ c
2
1þ tanh½kðt1� tÞ�; t1>t0; k>0. (16)

In the limit k → ∞, this protocol would stop the front
instantaneously at time t ¼ t1 because limk→∞ _ϕðtÞ ¼
cΘðt1 � tÞ, where Θ represents the Heaviside theta
function. For the inhomogeneity g we find

gðϕÞ ¼ Kc
c exp ( 2k

c ðct0 þ ϕ� ϕ0Þ)
e2kt0 þ e2kt1

. (17)

An additive control with G ¼ 1 is assumed.
We consider a rescaled Schlögl model with reaction rate

RðuÞ ¼ �uðu� aÞðu� 1Þ. The front solution is given as
UcðξÞ ¼ 1=½1þ exp ðξ= ffiffiffi

2
p Þ� with propagation velocity

c ¼ ð1� 2aÞ= ffiffiffi
2

p
for D ¼ 1. The region of convergence

of the Laplace transforms of kernel K and inhomogeneity g

determine the range of allowed values for k as
0 < k < cð1= ffiffiffi

2
p � cÞ=2 ¼ kmax. This amounts to a mini-

mum acceleration (or maximum deceleration) at time t ¼ t1
equal to

ϕ̈ðt1Þ ¼ � c
2
k > �

�
c
2

�
2
�

1ffiffiffi
2

p � c

�
; (18)

which can be realized under this control given explicitly by

fðxÞ ¼ �Kcc2 sin (
ffiffi
2

p
π

c ðc2 þ 2kÞ)e2k
c ðx�ϕ0Þffiffiffi

2
p

πð1þ e2kðt1�t0ÞÞðc2 þ 2kÞ . (19)

The divergence for x → ∞ can be circumvented by cutting
off f in such a way that RðuÞ þ ϵfðxÞ ¼ 0 locally keeps
three different real roots, meaning that bistability is
preserved at every point in space. A more systematic
approach to prevent divergence of fðxÞ would be to
consider the Fredholm integral equation (15) supplemented
with inequality constraints fmin ≤ f ≤ fmax for the control
function.
Under the control (19), the velocity of the numerical

solution first follows the protocol velocity closely, see the
right inset of Fig. 4. Deviations arise when the transition
region of the front enters the domain with large absolute
values of the control. These velocity deviations accumulate
to a difference in the position at which the front is stopped.
The front profile is slightly deformed in the regionwhere the
control is large because the solution (19) is not proportional
to the Goldstone mode, see the left inset in Fig. 4.
In conclusion, we have demonstrated that the proposed

method is well suited to control the position of traveling
fronts and pulses in RD systems according to a pregiven
protocol of motion ϕðtÞ while preserving the profile Uc of
the uncontrolled wave. To determine the control functions
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FIG. 4 (color online). Deceleration of a Schlögl front by an
additive stationary control. Red dashed line is the result of
numerical simulations, black solid line is the pre-given protocol.
Shown are the position ϕ and the velocity _ϕ (right inset). The
front profile (blue solid line) is slightly deformed in the region
where the control (purple dotted line) is large, see left inset.
Compare also S8 in [8].
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f, primarily the profile of the uncontrolled TW must be
known. In the majority of cases this profile can be obtained
only numerically or experimentally. Especially in the latter
case measurements must be sufficiently accurate to deter-
mine the Goldstone mode U0

cðxÞ. Additionally, the propa-
gation velocity c and the invertible coupling matrix G
are needed. For stationary control, Eq. (15), additionally
the value of the diffusion coefficient D is required.
Remarkably, the knowledge of the nonlinearity RðuÞ is
not necessary for the calculation of the control functions.
This makes the method powerful for applications where
details of the underlying kinetics RðuÞ are only approx-
imately known but the wave profile can be measured with
required accuracy. Examples do not only include chemical
and biological applications but also population dynamics
and spreading diseases [16]. Because the derivative of
TW profiles U0

cðxÞ decay exponentially as x → �∞, the
control (7) is usually localized. If the coupling matrix G is
not invertible and the RD system is of the form of Eq. (14),
a control function can still be derived; however, more
detailed knowledge of the reaction kinetics is required, see
Eq. (13). In all cases considered the spatiotemporal control
(7) was found to be close to an optimal control. We
emphasize that in contrast to our method, the computation
of an optimal control requires full knowledge of the reaction
kinetics and computationally expensive algorithms.
An important issue is the reliability of the proposed

controls. Large control amplitudes A ¼ c� _ϕ, Eq. (7),
sometimes destroy the TWand can lead to the spontaneous
generation of waves, as was also observed in Ref. [4]. We
demonstrate such behavior in the Supplemental Material,
see S7 in Ref. [8]. In general, the range of protocol
velocities _ϕ achievable by the proposed control method
depends on the reaction kinetics, the parameter values, and
higher order derivatives of _ϕ. A necessary condition for the
EOM (4) to be valid is the existence of a spectral gap for the
operator L, Eq. (3). For the Fisher equation [20], we found
a successful position control despite there being no spectral
gap [21]. An additive control attempting to stop the front
leads to a front profile growing indefinitely to �∞, while
a multiplicatively coupled control accomplishes this task
without significantly deforming the front profile, see S4
and S5, respectively, in the Supplemental Material [8].
Generalizing the proposed method to higher spatial

dimensions allows a precise control of shapes of RD wave
patterns. These findings as well as extensions to conser-
vative nonlinear systems and results regarding the stability
of the control method will be published elsewhere.
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