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The influence of migration on the stochastic dynamics of subdivided populations is still an open issue
in various evolutionary models. Here, we develop a self-consistent mean-field-like method in order to
determine the effects of migration on relevant nonequilibrium properties, such as the mean fixation time.
If evolution strongly favors coexistence of species (e.g., balancing selection), the mean fixation time
develops an unexpected minimum as a function of the migration rate. Our analysis hinges only on the
presence of a separation of time scales between local and global dynamics, and therefore, it carries over
to other nonequilibrium processes in physics, biology, ecology, and social sciences.
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Natural populations are often subdivided and frag-
mented in space, with the consequence that species or
genetic traits become locally extinct and recolonized by
migration. Understanding and predicting how migration
among subpopulations affects their collective evolution is,
therefore, an important issue across various disciplines,
e.g., conservation ecology [1], population genetics [2],
evolutionary game theory [3], language competition [4],
learning dynamics [5], and epidemics [6].
The dynamics of subpopulations results from the competi-

tionbetween theevolutionary“force” (selection)whichfavors
strongergenotypesand the intrinsicnoise (geneticdrift)due to
death and reproduction of individuals. This noise eventually
drives any finite population into an absorbing state (fixation),
in which all individuals have the same traits (e.g., species,
language, opinion). In subdivided populations,migration acts
with selection and internal noise, influencing the statistical
properties of the fixation process, such as the mean fixation
time (MFT). In this respect, it is widely accepted that in the
absence of spatial embedding, the effect of subdivision in
populations of constant and equal size effectively amounts at
a rescaling of the relevant parameters of the population, such
as the population size and the effective strength of the selec-
tion [7,8]. When selection is constant or absent, the MFT
monotonically decreases upon increasing the migration rate
[4,9,10], but more complex behaviors cannot be ruled out
a priori. Here, we consider evolutionary forces that favor
biodiversity, i.e., the coexistence of species or different
genotypes, showing that the MFT can, in fact, display a
nonmonotonic dependence on the migration rate. Even in the
absence of mutation, this kind of evolutionary forces are
common in the evolution of natural populations. For instance,
the so-called balancing selection [2,11] acts in several con-
texts, most notably mammalian [12] and plants [13]. The
maintenance of somegenetic diseases in humans, e.g., sickle-
cell anemia [14], thalassemia [15], and cystic fibrosis [16], is

also ascribed to balancing selection. Analogous mecha-
nisms are responsible for cooperative behaviors in ecology
and coevolutionary dynamics [17,18], such as those recently
observed in microbial communities [19], or for emergent
bilingualism in language competition [20].
For concreteness, we focus, here, on a model specific to

population genetics, andwe investigate the effect on theMFT
of the interplay between balancing selection and subdivision.
Wedevelop a self-consistentmean-field-like approachwhich
yields an effective dynamic equation, from which we derive
the nonequilibrium collective properties, such as the MFT.
For weak selection, our approximation renders the one of
Ref. [10]. We show that the MFT can actually develop a
minimum as a function of the migration rate for sufficiently
strong selection. This is in contrast to the assumptions in
Ref. [8] and to the intuitive idea that the collective fluctuation
needed to reach global fixation could be facilitated by
increasing the migration. The existence of this minimum
depends, inter alia, on the optimal frequency, i.e., on the
amount of biodiversity promoted by balancing selection
alone. The nonmonotonicity of the MFT is reflected in the
behavior of the so-called “heterozygosity,” which quantifies
the biodiversity within the subdivided population.
The model.—Inspired by common models in population

genetics, we consider Ω ≫ 1 individuals carrying a single
copy of a gene with two possible values (alleles) A and B.
The evolution of this large but finite population turns out
to be effectively described by a diffusion approximation
[21,22], i.e., by a Langevin equation for the frequency x of,
e.g., allele A. The mean change of x in a well-mixed
population is μðxÞ ¼ ~sxð1 − xÞ, where ~s is the selection
rate, while the variance is approximately given by
vðxÞ ¼ xð1 − xÞ=ðΩτgÞ, where τg is the generation time
(see Ref. [23] for a derivation of these expressions from
microscopic models). Hereafter, time is measured in units
of generations, so that τg ¼ 1 and the rates become
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dimensionless quantities. Balancing selection is character-
ized by ~s ¼ sðx� − xÞ, where s > 0 is a constant and x�
represents the internal optimal frequency which is pro-
moted by balancing effects in an infinite population.
In order to investigate the influence of migration on

subdivided populations with balancing selection in the
simplest possible setting, we consider the celebrated Island
model, originally proposed by Wright [29] for neutral
evolution. It consists of N subpopulations (demes), each
composed of Ω individuals which evolve as described
above [with the same μðxÞ and vðxÞ], while being allowed
to exchange a randomly picked individual with any other
deme at a rate m=N, such that Ω is unchanged. For
sufficiently large Ω and small m and s, the evolution of
the allele frequency xi ∈ ½0; 1� in the ith deme is described
by the Langevin equation [21,23] (with Itô prescription)

_xi ¼ μðxiÞ þmðx̄ − xiÞ þ
ffiffiffiffiffiffiffiffiffiffi
vðxiÞ

p
ηi; (1)

where ηi are independent Gaussian noises with
hηiðtÞηjðt0Þi ¼ δi;jδðt − t0Þ; hereafter, the overbar denotes

interdeme averages, e.g., xk ¼ P
ix

k
i =N, and thus, x̄ is the

interdeme mean frequency (IDMF). For m ¼ 0, the demes
are independent: the deterministic selection term μ in Eq. (1)
drives xi towards x�, while the random genetic drift finally
drives xi towards one of the two possible absorbing states
xi ¼ 0 and 1, corresponding to fixation of allele B and A,
respectively [see Fig. 1(a)]. For m > 0, migration acts as a
sourceofbiodiversity for the subpopulations, preventing their
independent fixation [see Figs. 1(b) and 1(c)] and favoring a
coordinate evolution of the interacting demes. For Ωm ≫ 1
and x� sufficiently close to 0 or 1, the collective evolution
rapidlydrives all demes into the sameabsorbingstate; instead,
for a wide range of parameters, the IDMF x̄ fluctuates for a
long time around a value x̂—characterized by the vanishing
of the deterministic force in the dynamics of x̄—until
fixation eventually occurs through a rare (for largeN) fluctu-
ation ([23], Sec. S2B). This coordinated behavior around x̂
becomes effectively a metastable state if the typical time Trel
required to reach it from the initial condition is significantly
shorter than the typical time Tfluct for fixation to occur. This
condition is satisfied for msΩ2N ≫ 1 ([23], Sec. S2A). The
statistics of fixation can be studied by considering the
evolution equation of x̄, which follows from Eq. (1):

_̄x ¼ s½x�x̄ − ð1þ x�Þx2 þ x3� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̄ − x2Þ=ðΩNÞ

q
η; (2)

where η is a Gaussian noisewith hηðtÞηðt0Þi ¼ δðt − t0Þ. This
equation involves higher-order moments, and the hierarchy
does not close; however, we can proceed by introducing a
moment closure scheme based on a self-consistent mean-
field-like approximation.
The approximation.—Since the global variable x̄ is

the average of N local frequencies, it is heuristically

expected that its dynamics is much slower than that of
the individual fxig, determining a separation of time scales
between the local and global dynamics. In the absence of
selection (s ¼ 0), Eq. (2) is driven only by the genetic drift;
therefore, the time scale separation occurs for sufficiently
large N (NΩm ≫ 1). Being coupled only via the slowly
varying quantity x̄, fxig can be considered as almost
independent random variables, each one described by a
conditional quasistationary distribution Pqsðxijx̄Þ. The lat-
ter can be obtained by solving the stationary Fokker-Planck
equation associated with Eq. (1), in which x̄ is treated as a
constant parameter. Under these assumptions the popula-

tion average xkðtÞ can be approximated, for N ≫ 1, by the
corresponding mean

R
dxi xki Pqsðxijx̄Þ. For s ¼ 0, one

obtains Pqsðxjx̄Þ∝x2m
0x̄−1ð1−xÞ2m0ð1−x̄Þ−1, where m0 ¼Ωm

is a rescaled rate introduced for convenience and Pqsðxjx̄Þ
satisfies the consistency condition x̄ ¼ R

1
0 dx xPqsðxjx̄Þ.

This Pqsðxjx̄Þ can then be used for evaluating x2 and x3

in Eq. (2) and for calculating the mean drift Mðx̄Þ and
variance Vðx̄Þ of the (stochastic) variable x̄ [10]

Mðx̄Þ ¼ sex̄ð1 − x̄Þðxe� − x̄Þ and Vðx̄Þ ¼ x̄ð1 − x̄Þ
Ne

:

(3)
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FIG. 1 (color online). Time evolution of the frequency xi of
allele A in the various demes (represented by different colors) of a
fully connected population consisting of N ¼ 8 demes with
Ω ¼ 100 individuals each (a) in the absence of migration (m ¼ 0)
or (b) for small (Ωm ¼ 0.05) and (c) large (Ωm ¼ 50) migration
rate. The balancing selection is characterized here by x� ¼ 0.5
and Ωs ¼ 5. At time t ¼ 0, half of the demes have xi ¼ 0.05,
while the remaining ones xi ¼ 0.95. Upon increasing N, the
fluctuations of x̄ around x� reduce significantly in panel (c).
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This implies that at the lowest nonvanishing order in s,
the subdivided population behaves like a well-mixed
one with an effective selection coefficient se ¼
s=½ð1þ ð1=m0ÞÞð1þ ð1=2m0ÞÞ�, an effective population
size Ne ¼ NΩð1þ ð1=2m0ÞÞ, and an effective optimal
frequency xe� ¼ x� þ ðx� − 1=2Þ=m0. The time scale Tmigr
associated with the response of xi to a variation of x̄ can be
read from Eq. (1) and it is Tmigr ≃ 1=m. The typical time
scale of the dynamics of x̄ is determined, instead, either by
the time scale Trel ≃ 1=se of the drift or by the time scale
Tfluct ≃ Ne of the stochastic term in Eq. (3). When
Trel <Tfluct, i.e., NΩs > 1þ 1=m0, our approximation
requires Trel ≫ Tmigr, i.e., se ≪ m, while in the oppo-
site case, it is accurate whenever N ≫ 1 (see Ref. [23],
Sec. S2A for a detailed discussion). This approximation
can be generalized to small but nonvanishing values of
se=m by accounting (a) for s ≠ 0 in the quasistationary
distribution Pqs, and (b) for the fact that x̄ slowly changes
during the fast evolution of xi, which results in a dist-
ribution PqsðxijyðtÞÞ where the effective field yðtÞ≃ x̄ðtÞ
has to be determined self-consistently. The single-deme
quasistationary distribution for s0 ≡Ωs ≠ 0 is

PqsðxjyÞ ∝ x2m
0y−1ð1 − xÞ2m0ð1−yÞ−1es0xð2x�−xÞ: (4)

The consistency condition x̄ ¼ R
1
0 dx xPqsðxjyÞ gives

y ¼ x̄ − ðse=mÞx̄ð1 − x̄Þðxe� − x̄Þ þOððse=mÞ2Þ, which can
be used together with Eq. (4) in order to calculate higher-
order corrections in s to Mðx̄Þ and Vðx̄Þ ([23], Sec. S3).
Mean fixation time.—On the basis of Mðx̄Þ and Vðx̄Þ

calculated as discussed above, the MFT Tfixðx̄Þ for the
whole population with an initial IDMF x̄ is determined

within the diffusion approximation by Vðx̄ÞT 00
fixðx̄Þ=2þ

Mðx̄ÞT 0
fixðx̄Þ ¼ −1 [30]. For x� ¼ 1=2, by using the lowest-

order approximations [ ð0Þ] for M and V in Eq. (3) and
choosing the state x̄ ¼ 1=2 (corresponding to the meta-
stable state) as the initial condition, we get

Tð0Þ
fix ¼ Ne

Z
1

0

dy
Z

1

0

dz
eseNeyð1−z2Þ=4

1 − yz2
; (5)

which reaches a constant value for m0 ≫ 1, while
Tð0Þ
fix =ðNΩÞ≃ log 2=m0 for m0 ≪ 1. Figure 2 shows Tð0Þ

fix
(solid line) as a function of m0 for the population specified
in the caption, together with the prediction (dashed line)
which accounts for the first-order correction in se=m to the

mean drift Mðx̄Þ and variance Vðx̄Þ [23]. Tð0Þ
fix shows a

marked nonmonotonic dependence on the migration rate
m0, while complying with the bounds of Ref. [8] for small

and large m0 (dashed-dotted lines). In fact, Tð0Þ
fix ðm0 ≫ 1Þ

approaches the value it would have in a well-mixed popu-
lation of ΩN individuals, whereas for m0 ≪ 1, fixation—
and thus, Tfix—is controlled by the growing time scale
Tmigr ∝ 1=m0 associated with migration. In this respect,
the limit m0 → 0 differs essentially from the case m0 ¼ 0,
in which Tfix is governed by the single-deme fixation times,
is finite, and scales ∝ logN for large N ([23], Sec. S4).
In order to demonstrate the accuracy of our analytical

predictions, Fig. 2 reports the results (symbols with error
bars) of numerical simulations of the Wright-Fisher (WF)
microscopic model with balancing selection [23]. Their
agreement with the analytical prediction of Eq. (5) is very
good and further improves upon including the first-order
corrections in se=m (dashed line).
Figure 3(a) shows that the nonmonotonicity displayed

in Fig. 2 is enhanced upon increasing σ ≡ s0N, while it
disappears for σ < σc, where σc ≃ 5.2 is a critical threshold
below which the MFT behaves qualitatively as in a neutral
population with s ¼ 0. The valuem0

min ofm
0 at which Tfix is

minimum diverges for σ → σc and decreases upon increas-
ing σ > σc, as shown in Fig. 3(b). The value σc slightly
depends on se=m if the corrections to Eq. (3) are included.
Figure 3(c) shows that the nonmonotonicity of Tð0Þ

fix also
persists for x� ≠ 1=2, but only within an interval of values
of x� which depends on σ—as indicated by the shaded area
in Fig. 3(d)—and which covers the entire range for σ ≳ 10.
Biodiversity.—Migration is expected to affect the level

of biodiversity of a population. In diallelic models, this
effect is usually studied in terms of (i) the global hetero-
zygosity H ¼ 2x̄ð1 − x̄Þ, which quantifies the diversifica-
tion of the global population but neglects the possible
subdivision in demes, and (ii) the intrademe heterozygosity
h ¼ ð2=NÞPN

i¼1 xið1 − xiÞ ¼ 2xð1 − xÞ, which measures
the average level of diversification inside each deme. Note
that 0 ≤ h ≤ H ≤ 1=2. H ¼ 0 corresponds to the loss of
global biodiversity, namely all individuals within the
population have the same genotype; H ¼ 1=2, instead,

10-2 10-1 100 101 102

m’

101

102

T
fi

x /(
Ω

N
)

0
th
-order

1
st
-order

WF model
bounds

FIG. 2 (color online). Mean fixation time as a function of the
migration rate m0 with N ¼ 30, Ω ¼ 100, s0 ¼ 1, and x� ¼ 0.5.
The solid line corresponds to Eq. (5), while the dashed line
accounts for the first-order correction in se=m; symbols with error
bars are the results of numerical simulations of the WF model.
The dashed-dotted lines indicate the upper bounds for small and
large migration, found in Ref. [8].
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corresponds to the maximal possible global biodiversity
in which the two genotypes are equally present within
the whole population. Analogous interpretation holds for
h ¼ 0 and h ¼ 1=2 at the intrademe level. As depicted in
Fig. 1(c), the local allele frequencies fxig approach each
other form0 ≫ 1, with xi ≃ xj, and therefore, h≃H. In the
case of the moderate migration rate m0 ≲ 1 of Fig. 1(b),
instead, different demes fix different alleles, causing h≃ 0,
while H is maintained positive by migration which acts as
a constant source of biodiversity.
In order to understand how migration affects biodiversity

before the eventual fixationH ¼ h ¼ 0, we assume that the
population at time t ¼ 0 is in the metastable state x̄ ¼ x̂
such that Hð0Þ ¼ 2x̂ð1 − x̂Þ, and that it persists in this
state until fixation occurs. Under this heuristic assumption,
one can approximate HðtÞ≃ ½1 − pfixðx̂; tÞ�Hð0Þ, where
pfixðx0; tÞ is the probability that a population prepared
with x̄ ¼ x0 at time t ¼ 0 has already fixed at time t. pfix
satisfies the backward Fokker-Planck equation ∂tpfix ¼
Mðx0Þ∂x0pfix þ Vðx0Þ∂2

x0pfix=2, which can be integrated
numerically. By using the expressions of M and V in
Eq. (3), the results of this approximation for H are
presented in Fig. 4 as functions of m0 for some values of
t, and they are compared with those of numerical simu-
lations of the WF model (symbols with error bars) [23].
Note that the estimate of HðtÞ is expected to become less
accurate as m0σ exceeds 1 because, correspondingly, the
state x̄≃ x̂ is no longer metastable ([23], Sec. S2B). For
slow and fast migration, HðtÞ≃Hð0Þ for a rather long
time, whereas HðtÞ rapidly decreases in time for inter-
mediate values of the migration rate. For a fixed time,

and as a function of m0, instead, H has a minimum at
m0 ≃m0

min, indicating that the global biodiversity can be
enhanced upon increasing migration [31]. Our predictions
agree rather well with the results of simulations, apart from,
as expected, m0 ≲ 1=σ ≃ 0.03. A similar study of both H
for different values of the parameters and h [23] highlights
a nonmonotonic dependence on m0 whenever the corre-
sponding Tfix develops a minimum.
Conclusions.—Focusing on the Island model [29], we

have shown that the mean fixation time of a subdivided
population can become a nonmonotonic function of the
migration rate m in the presence of balancing selection, an
evolutionary mechanism which promotes the coexistence
of different genetic traits within the same populations. The
emergence of a minimum depends on both the selection
strength σ ≡ sΩN exceeding a threshold and on the
frequency x� of coexistence which is promoted by the
selection. While the MFT increases upon decreasing m
because of the slowing down in the migration dynamics, its
possible increase for sufficiently largem has a less intuitive
explanation. A posteriori, this is due to the formation of a
metastable state, the “life time” of which might increase
upon increasing the migration rate. Our result extends
beyond population genetics: it carries over to any other
evolutionary model whose dynamics has an internal
attractive equilibrium (coexistence) in addition to absorb-
ing states (specialized states). Moreover, these features
should also appear in subdivided populations with more
complex migration or spatial [32] structures. It would be
interesting to understand whether the features discussed
here also emerge by introducing balancing selection in
those population models for which subdivision induces a
bifurcation [33], a phase transition [34], or a maximum in
some characteristic times of the dynamics [35]. The
approach presented here for describing the dynamics of
the entire population via an effective Langevin equation can
be generically applied to any collective dynamics in
which fast local variables are influenced by slow, global,
“mean-field-like” quantities. In this respect, it extends to
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FIG. 4 (color online). Dependence of the global heterozygosity
H on the migration rate m0 at various times, for a subdivided
population with Ω ¼ 100, N ¼ 30, s0 ¼ 1, and x� ¼ 1=2: the
prediction of the approximation described in the text (solid lines)
is compared with the results of simulations of the WF model
(symbols with error bars).
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transient properties the self-consistent mean-field-like
approximations typically used in statistical physics to
investigate the stationary properties of nonequilibrium
processes [36].
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