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Spin waves in antiferromagnets are linearly or circularly polarized. Depending on the polarization,
traversing spin waves alter the staggered field in a qualitatively different way. We calculate the drift velocity
of a moving domain wall as a result of spin wave-mediated forces and show that the domain wall moves
in opposite directions for linearly and circularly polarized waves. The analytical results agree with
micromagnetic simulations of an antiferromagnetic domain wall driven by a localized, alternating magnetic
field.
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Antiferromagnets (AFMs) are promising candidates
for future spintronic devices for the following reasons:
(1) They can be integrated with ferromagnetic components,
)2 ) switching occurs at very high frequencies, and (3) there
are no stray fields, allowing small independent devices to
be created [1,2]. The dynamics of AFMs are fundamentally
different from those of ferromagnets (FMs) because the
equations of motion are second order in frequency rather
than first order [3,4]. Furthermore, AFMs are affected by
both charge and spin currents, as was recently shown
theoretically [5] and experimentally [6]. The antiferromag-
netic order can be probed, e.g., via the anisotropic tunneling
magnetoresistance effect [7]. Additionally, a change in the
spin texture of the AFM affects both the longitudinal and
Hall resistivities [8].
In AFMs, domains usually result from crystal imperfec-

tions [9], but theymay also inherit the domain structure of the
ferrimagnetic precursor layer as they undergo a phase tran-
sition to the antiferromagnetic phase [10]. Antiferromagnetic
domains [11] and several forms of domain wall (DW)
structures in AFMs have been observed [12]. Furthermore,
DWsinAFMscanalsobe induced,controlled,andengineered
by exchange bias pinning forces [3,13].
Progress in the field of antiferromagnetic spintronics

requires the development of novel methods for exciting
AFMs at the nanoscale. Many AFMs are insulating and
cannot be affected by currents in the bulk; however, other
approaches can be employed to excite an AFM.We suggest
the use of antiferromagnetic spin waves (SWs) as a new
and exciting way of manipulating the order of AFMs. The
advantage to this method is that SWs in AFMs operate
coherently in the THz regime [14], which is orders of
magnitude faster than the frequency of typical ferromag-
netic SWs.
In this Letter, we demonstrate that SWs move DWs

in AFMs. We show that this phenomenon is considerably
richer than the analogous SW-DW interaction in FMs due
to the inherent complexity of antiferromagnetic SWs [15].
In contrast to SW-driven DW motion in FMs, we find that

the direction of DW motion in AFMs is governed by the
nature of the SW excitation modes. This behavior enables
superior control of DW motion induced by SWs in AFMs
compared to the same phenomena in FMs.
Spin-polarized currents can induce magnetization

dynamics in magnetic materials [16]. However, DWs in
FMs can also be moved by the transfer of spin angular
momentum from traveling SWs, eliminating the additional
dissipation cost associated with the electric current. Several
theoretical [17], experimental [18], and numerical [19]
studies have demonstrated that DW motion from magnonic
spin transfer is possible. The reciprocal phenomenon has
also been reported: DW motion in FMs induces local
excitations of SWs [20].
In AFMs, circularly polarized SWs carry spin angular

momentum whereas linearly polarized SWs do not. In a
scenario in which a circularly polarized SW passes through
an antiferromagnetic DW, the spin angular momentum flow
associated with its motion is reversed. However, because the
total spin angular momentum is conserved and antiferro-
magneticDWs cannot absorb the constant transferred flux of
spin angularmomentum,we show that this scenario does not
arise. Instead, circularly polarized SWs are reflected so that
linear momentum is passed to the DWs. Here, we demon-
strate that linearly polarized SWs, carrying no spin angular
momentum, can pass through DWs without any reflection,
as shown schematically in Fig. 1. As a result of this radical
difference in the behavior of circularly and linearly polarized
SWs, DWs move in opposite directions in response to the
different modes of SW excitations.
Themagnetizations on adjacent sublattices in anAFMare

equal in magnitude but are oppositely directed. We consider
a two-spin lattice, where the antiferromagnetic order param-
eter is defined as lðr; tÞ ¼ m1 −m2, and we introduce the
normalized staggered vector field nðr; tÞ ¼ lðr; tÞ=l, where
l ¼ jlðr; tÞj. The total magnetization field mðr; tÞ ¼ m1 þ
m2 is zero at equilibrium for AFMs. We also make use of
the constraint n ·m ¼ 0, which is valid in the exchange
approximation.
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The equations of motion for the staggered field and the
magnetization are as follows [4]:

_n ¼ ðγfm − G1 _mÞ × n; (1)

_m ¼ðγfn −G2 _nÞ × nþ ðγfm − G1 _mÞ ×m; (2)

where γ is the gyromagnetic ratio and G1 and G2 are
phenomenological Gilbert damping constants. The effec-
tive fields fm ¼ −δmU and fn ¼ −δnU are functional
derivatives of the free energy U of the AFM with respect
to the magnetization and the staggered order, respectively.
We consider a one-dimensional texture, e.g., an insulating

antiferromagnetic nanowire. In this case, the free energy
is U ¼ R

dr½am2=2þ Að∇nÞ2=2 − Kzn2z=2�, where a and
A are the homogeneous and inhomogeneous exchange
constants, respectively; a and A are related through
a ∼ A=ðl2d2Þ [21], where d is the lattice constant of the
AFM. Kz denotes the easy axis anisotropy along the wire,
which is defined as the z axis. We consider a DW created by
pinning the AFM to adjacent FMs in different directions in
the left and right reservoirs. The equilibrium shape of the
DW is now determined by the competition between the
exchange energy A and the anisotropy energy Kz.
To study the interaction between SWs and a DW, we

perform a unitary transformation of the present coordinate
system into the coordinate system of the DW, making use of
the spherical unit vectors r̂ ¼ ½sin θ cosϕ; sin θ sinϕ; cos θ�,
θ̂ ¼ ½cos θ cosϕ; cos θ sinϕ;− sin θ�, and ϕ̂ ¼ ½− sinϕ;
cosϕ; 0�. For a Walker DW [22], the equilibrium solution
of Eqs. (1) and (2) is given by m ¼ 0 and θ0 ¼ 2 arctan ×
expðξÞ. ξ depends on time through the DW center position,
rwðtÞ; ξ ¼ ðz − rwÞ=λ, where the DW width is defined as

λ ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=Kz

p
. We also treat the out-of-plane angle ϕwðtÞ as a

dynamic variable in the same manner as rwðtÞ.
SWs in AFMs are linear deviations of the staggered

order nðξ; tÞ and the magnetization mðξ; tÞ around their
equilibrium textures. The SW-DW interaction requires that
we expand nðξ; tÞ and mðξ; tÞ to second order for small
excitations h around the equilibrium DW texture r̂,

nðξ; tÞ ¼
�
1 −

h2

2
ðn2θðξ; tÞ þ n2ϕðξ; tÞÞ

�
r̂

þ h½nθðξ; tÞθ̂ þ nϕðξ; tÞϕ̂�; (3)

mðξ; tÞ ¼ h2mð2Þ
r r̂þ ½hmθðξ; tÞ þ h2mð2Þ

θ ðξ; tÞ�θ̂
þ ½hmϕðξ; tÞ þ h2mð2Þ

ϕ ðξ; tÞ�ϕ̂; (4)

where the notations nθðϕÞ and mθðϕÞ describe first-order
excitations in the θ̂ðϕ̂Þ direction of the staggered field
and the magnetization, respectively. We also include the
second-order excitations in the magnetization mð2Þ

θðϕÞ and
mð2Þ

r ¼ −ðmθnθ þmϕnϕÞ.
Using the Ansätze Eqs. (3) and (4) in Eqs. (1) and (2) and

expanding the staggered field to the first order in h, we
arrive at the equation of motion for SW excitations

n̈θðϕÞ ¼ aKzγ
2½∂2

ξnθðϕÞ þ ð2 sech2ðξÞ − 1ÞnθðϕÞ�
− aγG2 _nθðϕÞ: (5)

For simplicity, we have assumed that G2 dominates G1,
simplifying the description of the SW dynamics. This
assumption has been made only in the analytical treatment
and is not included in the numerical results presented
below. We conclude that excitations in the directions θ̂ and
ϕ̂ are decoupled in AFMs, which is fundamentally different
from the behavior of SWs in FMs [17]. This result implies
that both linearly and circularly polarized antiferromagnetic
SWs exist.
Using nθðϕÞðξ; tÞ ¼ nθðϕÞðξÞ expð−iωtÞ, Eq. (5) reads

ĤnθðϕÞðξÞ ¼ q2nθðϕÞðξÞ; (6)

where the operator Ĥ ¼ ½−∂2
ξ − 2 sech2ðξÞ�. The eigenval-

ues q2 ¼ ½ω2=ðγ2aKzÞ − 1þ iωG2=ðγKzÞ� define the dis-
persion relation of the antiferromagnetic SWs. Equation (6)
is a time-independent Schrödinger-type equation with the
Pöschl-Teller potential. This potential is reflectionless
and offers exact solutions in the form of traveling wave
eigenfunctions [23].
When q is purely imaginary, the solutions to Eq. (6),

nθ0ðϕ0Þ ¼ ρ0sechðξÞ, where ρ0 is an arbitrary amplitude,
describe localized states, centered around the DW. These
“Goldstone modes” [24] are distortions of the DW caused
by the system being forced out of equilibrium and are
naturally included in the formalism by considering the DW
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FIG. 1 (color online). Sketch of an antiferromagnetic DW
displaced to the left as a result of linearly polarized SW
excitations, where the SWs travel through the DW without
reflection.
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center rwðtÞ and chirality ϕwðtÞ to be collective dynamic
variables of the system.
For complex q, the solutions to Eq. (6) represent

propagating wave excitations superimposed on the stag-
gered field texture. These solutions can be written as
nθðϕÞðξ; tÞ ¼ ρkeiΩð tanhðξÞ − iqÞ, where ρk is the wave-
vector-dependent SW amplitude. Ω ¼ qξ − ωt so that
RefΩg is the general phase of the wavelike excitations.
Similar bound and travelling SW modes are also present in
antiferromagnetic Bloch DWs [9].
We use the Ansatz that the accelerations of the DW

center coordinate ̈rwðtÞ and chirality ϕ̈wðtÞ are proportional
to the square of the amplitude of the SWs and, thus, are
second-order effects for the small excitation parameter h.
In the following, we assume that the antiferromagnetic

SWs are linearly polarized transverse to the plane of theDW,
along ϕ̂ [nθ ¼ 0 with ϕð0Þ ¼ 0]. Circularly polarized SWs
demand a different treatment and are discussed later. After
combining Eqs. (1) and (2), inserting the effective fields
fn ¼ Kznzẑþ A∂2

zn and fm ¼ −am, expanding to order h2,
and integrating over space, we find that ϕ̈w þ aγG2ϕ̈w ¼ 0,
and the equation of motion for the DW coordinate rw is

̈rw þ aγG2 _rw ¼ aγ2Kz

π

Z
∞

−∞
dξhn2ϕisechðξÞtanhðξÞ; (7)

where hn2ϕi denotes a temporal average. By carrying out
this average, we disregard temporal oscillations of the
coordinate rw as the DW moves.
Equation (7) (without dissipation) is a result of the

conservation of linear momentum density. As an explan-
ation, let us consider the Lagrangian density of the AFM
L ¼ _n2=ð2aγ2Þ − Að∇nÞ2=2þ Kzn2z=2 [25]. Noether’s
theorem implies a continuity equation for the linear
momentum density along z, dTzt=dtþ dTzz=dz¼ 0, where
Tzjðj ¼ z; tÞ ¼ ð∂zq∂∂jq − δzjÞL is defined as in Ref. [26]
and q ¼ θ;ϕ; nϕ. After integration and time averaging, we
find that the continuity equation is identical to Eq. (7)
(without dissipation).
The real part of the SW solutions for a small dissipation

G2 is

Refnϕg ≈
ρk

ð1þ k2λ2Þ1=2 e
−Qðξþjξ0jÞ=2

× ½cosðkλξ − ωtÞtanhðξÞ þ kλ sinðkλξ − ωtÞ�;
(8)

whereQ ¼ G2ω=ðγKzkλÞ, ξ0 ¼ ðrw − z0Þ=λ, z0 is the posi-
tion of the excitation source, and k ¼ ½ω2=ðaγ2KzÞ − 1�1=2=λ
is the real wave vector of the monochromatic SWs at the
driving frequency ω. The SW amplitude depends on the
form of the excitation source Hextðz; tÞ through its spatial
Fourier transform: ρk ¼ ωF kfHextðz; tÞg=ðaγAkÞ.

Inserting Eq. (8) into Eq. (7) and solving for the
steady-state (̈rw → 0) velocity, we obtain

_rw ¼ −ρ2ke−Qjξ0j ð1þ 3k2λ2Þω
6k

: (9)

Equation (9), which is our first central result, shows that the
steady-state DW drift velocity induced by linearly polar-
ized SWs is independent of the dissipation G2 for high
frequencies ω. In the long-wavelength limit, when kλ → 0,
the DW velocity becomes large when the driving frequency
is close to resonance, ω → ω0 ¼ ðaγ2KzÞ1=2. Naturally, the
expansion in terms of a low dissipation G2 breaks down
close to this limit.
To verify Eq. (9), we conduct a micromagnetic simu-

lation of Eqs. (1) and 2 for a one-dimensional antiferro-
magnetic nanowire with a Néel DW in the x-z plane as the
initial condition. We add the external magnetic field source
term Hextðz; tÞ to the free energy, U → U −

R
drHext ·m.

We then write Eqs. (1) and (2) in dimensionless form by
scaling the time axis by ~t ¼ ðγalÞ−1 and the z axis by the
lattice constant d. The simulation is based on the numerical
method of lines with a time step control that is adaptive.
The length of the wire is set to 1000 lattice constants, and
the DW is initally positioned at z ¼ 0. We impose absorb-
ing boundary conditions at z ≤ −400 and z ≥ 400. The
SWs are excited in the region z ¼ ½−72;−68� by a
homogeneous and dimensionless magnetic field source
hextðtÞ ¼ ~h sin ð ~ωtÞx̂, where ~ω ¼ ω=ω0. DW widths in
AFMs are expected to be small [12], and therefore, we
choose λ ¼ 5d. Other dimensionless constants are listed in
Table I.
Figure 2 shows the simulated DW velocity as a function

of excitation frequency. The velocity is given in units of
v0 ¼ γA=ðldÞ. For frequencies close to ω0 the long-
wavelength resonance peak is easily discernible. The
velocity drops to zero for ~ω ≈ 4, which is a result of the
step shape of the excitation source.
Although we consider an antiferromagnetic nanowire

with easy axis anisotropy, we estimate the magnitude of the
DW velocity using parameters for the antiferromagnetic
insulator NiO, which has easy plane anisotropy in the bulk.
We use ANiO ≈ 5 × 10−13 J=m, dNiO ≈ 4.2 Å, and a mag-
netic moment per sublattice of 1.7μB [27], with μB being
the Bohr magneton. With these parameters v0 ≈ 500 m=s,

TABLE I. Dimensionless numerical constants.

Constant Composition Value

~a al2d2=A 1
~G1 G1l 0.002
~G2 G2=l 0.002
~Kz Kzd2=A 5−2

~h h=ðalÞ 0.05
~z0 z0=d −70
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and the resonance frequency ω0 ≈ 200 GHz. The DW drift
velocity induced by long-wavelength linearly polarized
SWs in NiO is then approximately 5–10 m=s directed
toward the SW source.
Next, we discuss the very different interactions that arise

between circularly polarized SWs and DWs. Numerically,
when we excite circularly polarized antiferromagnetic
SWs, hextðtÞ ¼ ~h½sin ð ~ωtÞx̂þ cos ð ~ωtÞŷ�, we observe that
the SWs are reflected from the DW structure (SW behavior
not shown). The DW now moves in the same direction
as the incoming SWs. This DW behavior is opposite to that
observed for linearly polarized SWs. Additionally, circu-
larly polarized SWs also cause the DW to acquire a net
angular velocity _ϕw.
To elucidate this phenomenon, consider Eq. (2) with the

effective fields inserted but without dissipation,

_m ¼ −γn × Kznzẑ −∇Jm; (10)

where Jm ¼ γAn ×∇n is defined as the spin wave spin
current [28] through the AFM. The z component of
Eq. (10) has the form of a conservation law for spin
angular momentum ∂tmz þ ∂zJmz

¼ 0, where Jmz
ðξÞ ¼

γAðnθ∂ξnϕ − nϕ∂ξnθÞtanhðξÞ=λ. The spinwave spin current
vanishes for linearly polarized SWs, whereas circularly
polarized SWs carry Jmz

¼ �γAkρ2k, where the sign depends
on the SW helicity. After integration over space, we find

∂tMz ¼ −½Jmz
ð∞Þ − Jmz

ð−∞Þ�; (11)

where Mz is the total magnetization in the z direction.
There are two possibilities for circularly polarized SWs.

In the first scenario, the SWs are transmitted through the
DW, causing the spin current to change its sign after
transmission. In this case, the right-hand side of Eq. (11) is

finite, which leads to the buildup of a local magnetic
moment around the DW. In the second scenario, the SWs
are reflected, and the right-hand side of Eq. (11) vanishes.
Only the second scenario is possible in the steady state
because the strong exchange interaction in the AFM
counteracts the buildup of an increasing local magnetic
moment.
Having established that circularly polarized SWs are

reflected, we calculate the DW velocity by means of linear
momentum transfer from reflected SW packets to the DW.
From the Lagrangian density, we calculate the linear
momentum density in the z direction Tzt ¼ ∂zq∂ _qL [26],
with q ¼ θ;ϕ; nθ; nϕ. After integrating over space, we
find that the total linear momentum in the z direction
Pz ¼

R
dzTzt can be split into a DW part and a SW part:

PDW
z ¼ 2_r=ðaγ2λÞ and PSW

z ¼ R
dzðn2θ þ n2ϕÞkω=ðaγ2Þ.

When considering SW packets, the continuity equation
for linear momentum density in the z direction becomes a
conservation law for the total linear momentum Pz, accor-
ding to Noether’s theorem, and we find 0 ¼ dPz=dt ¼
d=dtðPDW

z þ PSW
z Þ. A train of reflected SW packets

exerts a force ΔPSW
z =Δt ¼ ρ2kkωðvg − _rwÞ=ðaγ2Þ, where

vg ¼ aγ2Ak=ω is the SW group velocity. Balancing this
force to the force on the DW, dPDW

z =dt¼2ðr̈wþaγ2G2 _rwÞ=
ðaγ2λÞ, gives the resulting DW velocity in steady state as

_rw ¼ vg
1þ aγG2

ρ2kλkω

; (12)

which is our second and final central result. For low
damping, the DW is accelerated to the SW group velocity
vg, which is several hundred meters per second for typical
AFMs. Therefore, the DW motion induced by circularly
polarized SWs is oppositely directed and much faster than
the motion caused by linearly polarized SWs. Numerically,

Numerics

Eq. 9
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FIG. 2 (color online). Negative DW velocity −_rw in units of
v0 ¼ γA=ðldÞ, as a function of the applied excitation field
frequency ~ω, for linearly polarized SWs. The DW is attracted
towards the SW source. Blue circles represent the results of
numerical simulations, and the red line indicates the analytical
result based on Eq. (9).
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FIG. 3 (color online). DW velocity _rw as a function of the
applied field frequency ~ω for circularly polarized SWs. The DW
is pushed away from the SW source due to reflection. Blue
crosses represent the results from numerical simulations, the red
line indicates the analytical result based on Eq. (12), and the
dashed blue line shows the group velocity vg of the SWs.
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we see in Fig. 3 that Eq. (12) captures the DWmotion well,
especially at low applied frequencies. We speculate that
the assumption of total SW reflection will break down for
higher frequencies.
In conclusion, we have investigated the manner in which

antiferromagnetic SWs move DWs in AFMs. Linearly
polarized SWs drive DWs towards the SW source, analo-
gous to the effect of magnon spin transfer torque in FMs.
In contrast to the ferromagnetic case, where the DW moves
due to the conservation of angular momentum, the
SW-driven antiferromagnetic DW motion can be under-
stood as arising from the conservation of linear momentum
density. Circularly polarized antiferromagnetic SWs are
scattered by the DW to prevent the buildup of a local
magnetic moment around the DW center. This behavior
causes the DW to move away from the SW source at
velocities of several hundred meters per second.
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