
Superconductivity on the Brink of Spin-Charge Order in a Doped Honeycomb Bilayer

Oskar Vafek,1 James M. Murray,1,2 and Vladimir Cvetkovic1
1National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahasse, Florida 32306, USA

2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
(Received 12 September 2013; published 11 April 2014)

Using a controlled weak-coupling renormalization group approach, we establish the mechanism of
unconventional superconductivity in the vicinity of spin or charge ordered excitonic states for the case
of electrons on the Bernal stacked bilayer honeycomb lattice. With one electron per site, this system,
physically realized in bilayer graphene, is unstable towards a spontaneous symmetry breaking. Repulsive
interactions favor excitonic order, such as a charge nematic and/or a layer antiferromagnet. We find that
upon adding charge carriers to the system, the excitonic order is suppressed, and unconventional
superconductivity appears in its place, before it is replaced by a Fermi liquid. We focus on firmly
establishing this phenomenon using the renormalization group formalism within an idealized model with
parabolic touching of conduction and valence bands.
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Phase diagrams of a number of material classes exhibit
unconventional superconductivity (SC) in close proximity
to Néel antiferromagnetism and/or charge ordered states.
To date no consensus has emerged regarding the precise
mechanism underlying this phenomenon, particularly
whether the nonsuperconducting order is beneficial or
detrimental to SC. While excitonic phases are a natural
consequence of repulsive electron-electron interactions,
SC is not. And while it has been advocated that this
proximity is not merely a coincidence, and that low energy
spin fluctuations or other soft modes from the nearby
particle-hole phase tend to enhance SC, there is so far no
consensus regarding the precise mechanism by which this
occurs [1–7].
The bilayer honeycomb lattice in many ways provides

an ideal arena in which to explore these questions. To a
good approximation, and over a wide energy interval, the
conduction and the valence bands touch parabolically at
two inequivalent crystal momentum points, �K. The band
touching is guaranteed by the time reversal and the crystal
symmetries because the two bands transform as a doublet
under the space group operations at �K. Such a non-
interacting state is absolutely unstable to a ground state with
a spontaneously broken symmetry once electron-electron
interactions are included [8–16]. Experimental studies on
suspended bilayer graphene samples, which realize such a
lattice, have shown hallmarks of the formation of interaction-
driven symmetry breaking (excitonic) phases, with evidence
for both gapped [17–21] and gapless [17,22,23] behavior.
The electron interactions in this system appear to be strong
enough to lead to spontaneous symmetry breaking, yet small
enough to allow for the use of weakly coupled theoretical
approaches—as evidenced by the small energy scales
(∼millielectron volts) up to which the signatures of the
ordering behavior appears experimentally.

The central question, which we address theoretically
here, is what happens when additional charge carriers are
introduced and the very clean system is driven away from
the neutrality point. We find that, as the high energy modes
are progressively eliminated, the initially repulsive inter-
action between electrons turns attractive in several, but
not all, two-electron scattering channels. Importantly, such
“repulsion-turned-attraction” happens in the regime that,
at weak coupling, can be accessed under strict theoretical
control: the strength of the attraction generated is propor-
tional to the strength of the initial repulsion. For small
carrier concentration δn, the interaction in the attractive and
repulsive channels grows, eventually preventing SC from
occurring, and leading to a state with spin or charge order
instead. Increasing δn leads to a saturation of the strength of
the repulsive channels, while the attractive channels con-
tinue growing, giving rise to a superconducting ground
state. Upon further increase of δn, the attraction is not
generated, and the system remains a Fermi liquid. We focus
on firmly establishing this result using the renormalization
group (RG) formalism within an idealized model with
parabolic touching [24], postponing any detailed analysis
of its potential experimental observation in a realistic bilayer
graphene. While some theoretical works have proposed
supercondutivity in honeycomb bilayer systems, using either
the t-J model [25,26] or RPA [27], unlike ours, such an
approach is uncontrolled [28] and cannot be used to establish
the effect.
We build on the method developed in Refs. [8,10,14]

and organize the low energy electronic modes in the
vicinity of each valley �K into a spinorlike object ψk;σ ¼
ðcKþk;σ; dKþk;σ; c−Kþk;σ; d−Kþk;σÞT , where spin σ ¼ ↑or↓.
The annihilation operators c and d correspond to the low-
energy electrons in the bottom and top layer, respectively.
The corresponding Hamiltonian operator is

PRL 112, 147002 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

0031-9007=14=112(14)=147002(5) 147002-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.147002
http://dx.doi.org/10.1103/PhysRevLett.112.147002
http://dx.doi.org/10.1103/PhysRevLett.112.147002
http://dx.doi.org/10.1103/PhysRevLett.112.147002


H ¼
X
jkj<Λ

X
σ¼↑;↓

ψ†
k;σHkψk;σ þ

2π

m�
X16
j¼1

gj

Z
d2rρ2jðrÞ; (1)

where ρjðrÞ ¼
P

σ¼↑;↓ψ
†
σðrÞΓjψσðrÞ and ψσðrÞ ¼

1
L

P
jkj<Λeik·rψk;σ, L is the linear system size, and

Hk ¼ k2x − k2y
2m� 1σ1 þ

kxky
m� τ3σ2 þ v3kxτ3σ1 − v3ky1σ2: (2)

The Pauli matrices τi and σi operate in valley and layer
spaces, respectively. There are 16 independent 4 × 4
matrices denoted here by Γj (see Table I). Of the 16
dimensionless couplings gj only the first nine are inde-
pendent, each corresponding to an irreducible representa-
tions of the lattice space group:D3d at Γ ¼ ð0; 0Þ, andD3 at
K ¼ ðð4π=3 ffiffiffi

3
p

aÞ; 0Þ. For bilayer graphene, m�≈0.029me
[18,22,23], while v3, which at very low energies distorts the
parabolic spectrum into four Dirac cones near each of the
�K points, is [23] v3 ≈ 1.41 × 105 m=s. The upper cutoff
energy scale ΩΛ ¼ Λ2=2m� ∼ 0.2 eV.
We rewrite the equilibrium partition function Z¼

Trðe−βðH−μNÞÞ in terms of the usual coherent state
Grassmann path integral Z¼RDðψ�;ψÞe−S, where
β¼1=kBT. The action S¼ R β0 ðPk;σψ

†
k;σðτÞðð∂=∂τÞ−μÞ×

ψk;σðτÞþHðτÞÞ and HðτÞ is obtained by replacing the
operators ψk;σ with Grassmann valued fields ψk;σðτÞ ¼
ð1= ffiffiffi

β
p ÞP∞

n¼−∞ e−iωnτψk;σ;n with Matsubara frequencies
ωn ¼ ð2nþ 1ÞπkBT. The Wilsonian RG procedure begins
by integrating out all ψk;σ;n’s within a thin shell of momenta
ð1 − dlÞΛ < jkj < Λ, but for all n and σ. Afterwards, we
rescale the momenta, the fields, temperature, the chemical
potential μ, and v3 in such a way that the cutoff goes back to
Λ and the terms in Hk, which are quadratic in k, remain

invariant. According to this “tree-level” rescaling, one finds
that the coupling constants gj remain unchanged while
Tl ¼ Te2l, μl ¼ μe2l, and v3l ¼ v3el. For any finite
range interactions, therefore, H is of the most general
form respecting particle-hole symmetry, in that omitted
interaction terms containing derivatives or the product of
more than four fermion fields quickly renormalize to zero.
At the next order in gj, the RG flows of T and v3 are

unaffected by the interaction correction. The modification
appears in the flows of μl and gj’s. We will now set
T ¼ v3 ¼ 0. Then the flow of μl does not change and

dgiðlÞ
dl

¼
X9
j;k¼1

AijkðμlÞgjðlÞgkðlÞ: (3)

These flow equations are valid as long as gi ≪ 1.
At the neutrality point μl ¼ 0 and the functions Aijk

reduce to constants [29]. Equations (3) are left invariant
upon simultaneous rescaling of gj → bgj and l → l=b.
Therefore, any solution of Eqs. (3) has the form

giðl; fgjð0ÞgÞ ¼ gΦiðgl; fgjð0Þ=ggÞ; (4)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jg
2
jð0Þ

q
and the Φi’s are functions that can

be determined numerically, which typically diverge at a
finite value of l ¼ l�. A key insight can be gained by
exactly recasting the interaction term in the action as a
pairing interaction Sint ¼ 2π

m�
R β
0 dτ

R
d2rLint and

Lint ¼
X10
j¼1

~gjS
†
jðr; τÞSjðr; τÞ þ

X16
j¼11

~gj ~T
†
jðr; τÞ · ~Tjðr; τÞ;

(5)

where the spin singlet and the spin triplet Cooper pair
terms are

Sjðr; τÞ ¼
X

α;β¼↑;↓

ψT
αðr; τÞΓðsÞ

j ðiσ2Þαβψβðr; τÞ; (6)

~Tjðr; τÞ ¼
X

α;β¼↑;↓

ψT
αðr; τÞΓðtÞ

j ðiσ2~σÞαβψβðr; τÞ: (7)

The nine independent pair interactions ~gj can be written as
a linear combination of gj ’s using Fierz identities [29]

~gRp
¼

X
R0¼A1;A2;E

FRR0
X

p0¼g;u;K

Fpp0gR0
p0 (8)

where

F ¼
 
1 −1 2

1 −1 −2
1 1 0

!
.

For generic repulsive interactions all ~gj’s are initially
repulsive and not obviously conducive to Cooper pairing.

TABLE I. Each Γj in the second column corresponds to one of
the 4 × 4 matrices in the first column. Couplings gj are in the
third column. Each representation has the same coupling, e.g.,
g3 ¼ g10 ¼ gEg

. Fourth column: the matrices appearing in the
pairing bilinears (5), with values given in the first column. The
associated ~gj’s are in the last column.

14 Γ1 gA1g
ΓðsÞ
7 ~gEK

τ3σ3 Γ2 gA2g
ΓðsÞ
8 ~gEK

1σ1, τ3σ2 Γ3, Γ10 gEg
ΓðsÞ
5 , ΓðtÞ

15 ~gA1K
, ~gA2K

τ31 Γ4 gA1u
ΓðsÞ
9 ~gEK

1σ3 Γ5 gA2u
ΓðsÞ
10 ~gEK

τ3σ1, −1σ2 Γ6, Γ11 gEu
ΓðsÞ
6 , ΓðtÞ

16 ~gA1K
, ~gA2K

τ1σ1; τ2σ1 Γ7; Γ12 gA1K
ΓðsÞ
2 , ΓðtÞ

13 ~gEg
, ~gEu

τ1σ2; τ2σ2 Γ8; Γ13 gA2K
ΓðtÞ
14 , Γ

ðsÞ
3 ~gEu

, ~gEg

τ11, −τ2σ3 Γ9, Γ14 gEK
ΓðsÞ
1 , ΓðtÞ

11 ~gA1g
, ~gA2g

−τ21, −τ1σ3 Γ15, Γ16 gEK
ΓðtÞ
12 , Γ

ðsÞ
4 ~gA1u

, ~gA2u

PRL 112, 147002 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

147002-2



Nevertheless, under RG attraction is generated: there is a
scale l1 where ~giðl1Þ ¼ 0 for some i’s, and continues
negative for l1 < l < l�. An example of this can be seen
in Fig. 1 where g≡ gA1g

ð0Þ > 0, otherwise gjð0Þ ¼ 0 (we
refer to this as the forward scattering limit). Flow equations
for this model at μ ¼ 0 can be found in Ref. [8]. Because of
the scaling form discussed above, l1 ¼ C1=g, and similarly
l� ¼ C�=g, where C� > C1 > 0. At l1 the couplings
therefore attain values giðl1Þ ¼ gΦiðC1; fgjð0Þ=ggÞ.
Since ΦiðC1; fgjð0Þ=ggÞ are finite numbers, independent
of g, we arrive at an important conclusion that if g is small
then so is giðl1Þ; attraction is therefore generated in the
regime when the flow equations (3) are valid. As long as
μl1 ≪ ΩΛ, a finite μ does not change the above conclusion,
because it has essentially no effect on the flow equations
up to, and near, l1.
However, such attractive pair interactions do not neces-

sarily lead to SC. As shown in Fig. 1, if μl� ≪ ΩΛ the growth
of the attractive ~g’s is accompanied by the growth of the
repulsive ~g’s, disfavoring SC and favoring an excitonic state.
In order to demonstrate this, we introduce infinitesimal sym-
metry breaking source terms into the starting Hamiltonian

H→HþPkð
P

16
j¼1 δH

ðjÞ
1 þP10

j¼1Δ
pp
j δHðjÞ

2s þ
P

16
j¼11

~Δpp
j ·

δHðjÞ
2t Þ, where δHðjÞ

1 ¼ ψ†
k;αðΔph

j Γjδαβ þ ~Δph
j · Γj~σαβÞψk;β,

andδHðjÞ
2ðs;tÞ ¼ 1

2
ψT
k;αΓ

ðs;tÞ
j ðiσ2ð1; ~σÞÞαβψ−k;βþH:c.Usingour

RG procedure we find the dependence of the Helmholtz free
energy δf on Δj’s and l. This is then used to compute the
susceptibility χij ¼ −ð∂2δf=∂Δ�

i ∂ΔjÞ, associated with exci-
tonic or superconducting ordering tendencies shown in
Fig. 2. We see that in the regime μ ≪ ΩΛe−2C�=g, despite
generating the attractive interactions at l1, the susceptibility
in the excitonic channels grows above the superconducting
ones. With pure forward scattering, the dominant instability
appears to be the charge nematic [8,9,14,15].

On the other hand, if μl� ≫ ΩΛ ≫ μl1 , then, once
generated, the attractive interactions continue growing
while the repulsive ones do not. The Fermi surface is
reached after l1 but before l�, and the ground state is a
superconductor. Substituting for l1 and l�, the condition
translates into ΩΛe−2C�=g ≪ μ ≪ ΩΛe−2C1=g. Because
C1 < C�, this can always be satisfied for sufficiently small
g. Indeed, the flow equations for ~gj’s take the form

d~gi
dl

¼ −ai
ð1 − μ

ΩΛ
e2lÞ ~g

2
i þ

X
j;k

~Aijk

�
μ

ΩΛ
e2l
�
~gj ~gk; (9)

where ai ≥ 0 and the functions ~Aijk are nonsingular at
lFS ¼ ð1=2Þ lnðΩΛ=μÞ. This result is general [29]. Letting

t ¼ 1

2
ln

�
ΩΛ − μ

ΩΛe−2l − μ

�
; (10)

which vanishes at l ¼ 0 and grows without bound as
l → lFS, the flow equations take the form

d~gi
dt

¼ −ai ~g2i þ
P

j;k
~Aijkð μ

ΩΛ
e2lðtÞÞ~gj ~gk

1þ μ
ΩΛ−μ e

2t : (11)

The second term is just as important as the first for small t.
However, as l approaches lFS, t grows and the second term
is exponentially suppressed. Because lFS < l�, all the
couplings are of order g at the beginning of the regime
marked by t0 where the second term may be neglected. The
solution of the resulting equation is ~giðtÞ ¼ ~giðt0Þ=
½1þ ai ~giðt0Þðt − t0Þ�. The negative couplings thus grow
and become of Oð1Þ when t − t0 is Oð1=~giðt0ÞÞ ∼Oð1=gÞ.
Since μe2t0=ΩΛ is of Oð1Þ, the second term in Eq. (11) is
indeed exponentially small at such t and may be neglected.
The repulsive couplings are therefore small when the
attractive couplings become of Oð1Þ. Only χ’s in the
attractive Cooper channels grow (see Fig. 2), and they
do so with mean-field exponents. In the third regime,

FIG. 1 (color online). (a) The flow of interaction couplings gj
defined in Eq. (1), when initially g ¼ gA1g

ð0Þ > 0, while all other
couplings vanish. Under such conditions, only gA2g

and gEg
get

generated, while all other couplings vanish. Here μ ¼ 0. (b) The
corresponding flow of the Cooper pair couplings ~gj defined in
Eq. (5). All nine ~gj’s are finite as can be seen from the Fierz
matrix (8); their values are independent of the g,u, and K label,
i.e., ~gA1g

¼ ~gA1u
¼ ~gA1K

¼ ~gA1
, etc. Note that if g is small then

the attractive interactions are generated in the regime where the
weak coupling RG is fully justified.

FIG. 2 (color online). RG flows with gA1g
ð0Þ ¼ 0.05 vs t

[Eq. (10)]. For the solid curves μ ¼ 10−9ΩΛ; for the dashed
curves μ ¼ 3 × 10−6ΩΛ. The former is in the regime μ ≪
ΩΛe−2C�=g leading to an excitonic order, the latter in
ΩΛe−2C�=g ≪ μ ≪ ΩΛe−2C1=g leading to SC. (a) ~g in Eq. (5).
(b) Susceptibilities in excitonic and superconducting channels.
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μl1 ≫ ΩΛ, and the attraction is not generated; the system is
a Fermi liquid.
Generalizing to the case of microscopic density-density

interactions, the only additional nonzero bare couplings
besides gA1g

are gA2u
and gEK

, which correspond to interlayer
scattering and backscattering, respectively [30]. Increasing
the latter two relative to gA1g

corresponds to decreasing the
spatial range of the interaction, with the Hubbard limit of
on-site interaction corresponding to gA2u

¼2gEK
¼gA1g

. In
order to interpolate between the two limits, we let gA2u

¼
2gEK

¼ λgA1g
, so that λ ¼ 0 and λ ¼ 1 correspond to the

forward-scattering and Hubbard cases, respectively. For
small λ, shown in Fig. 3(a), the μ ¼ 0 flows are similar
to those in Fig. 1, with the three ~g’s corresponding to A1, A2,
and E each remaining nearly degenerate over most of
the range. The first three ~g’s to turn negative are again
the A1, although they no longer cross at the same point,
with ~gA1K

changing sign first. Near the flow singularity at
gl ¼ C� ≈ 0.356, the d-wave (Eg) and s-wave (A1g)
couplings turn negative and positive, respectively. As λ is
increased further, ~gEg

becomes negative at progressively
smaller values of l, while ~gA1g

remains repulsive over the
entire range of flows for λ≳ 0.05, indicating that even a
small amount of backscattering suppresses the tendency
toward s-wave pairing. The ~gA2g

coupling also turns attrac-
tive for sufficiently large λ.
The case of Hubbard interaction is shown in Fig. 3(d). At

μ ¼ 0 the dominant instability appears in the layer anti-
ferromagnetic channel [10,14,16]. It follows from Eq. (8)
that many of the bare couplings ~gi vanish, so that some will
become negative already at infinitesimal l. Thus, according
to the arguments in the previous section, at T ¼ 0 one no
longer obtains a Fermi liquid at any μ. The Hubbard model is

special in that it exhibits a superconducting instability even
for large values of μ, somewhat similar to the square lattice
case [31–34]. From the flows in Fig. 3(d), we see that the
~gA1K

, corresponding to a pair density wave (PDW), and ~gEg
,

corresponding to d-wave, superconducting channels, are the
most attractive. We analyzed the χ’s, and solved the self-
consistent mean field equations with ~g’s and μ determined by
terminating the RG flow at t where the ~g are decoupled. We
find that a PDW emerges as the leading instability. This
corresponds to a unidirectional 2K modulation of the real
singlet pairing amplitude, with a fully gapped spectrum.
Since such a state is dependent upon the circular symmetry
of each Fermi pocket, however, we expect that the d� id-
wave state will be favored for a more physically realistic
model, in which this symmetry is destroyed by further
neighbor hopping, or equivalently v3 ≠ 0 [35].
We estimate the crossover temperature T� associated

with ordering from the value of l ¼ lO where couplings
become of Oð1Þ to be the solution of 2 coshð μ

T�Þ×
exp ð−ΩΛe−2lO=T�Þ ≈ 1. This comes from estimating the
temperature at which the thermal factors appearing in the
finite T flow equations at the scale lO deviate appreciably
from their low temperature asymptotic form [35]. The
dependence of T� on μ and g for the forward scattering limit
is shown in Fig. 4. We emphasize that the theory presented
here is distinct from the Kohn-Luttinger theory [36], in
which ordinary second-order perturbation theory can lead
to an effective attractive interaction in a channel with
sufficiently large angular momentum. In that case, the Tc
of the SC for small g will always be ∼e−a1=g2 , rather
than ∼e−a2=g as in our case, where a1;2 are g independent
and of Oð1Þ.
Finally, given that the paired states found here are

unconventional, they are sensitive to disorder. This may
be the reason that there are currently no reports of SC in
bilayer graphene. Nevertheless, given that the doping can
be controlled electrostatically, and that some of the high

FIG. 3 (color online). Coupling flows for various values of
bare couplings, with μ ¼ 0. λ ¼ 0 corresponds to the forward-
scattering limit, in which only gA1g

is nonzero, while λ ¼ 1
corresponds to on-site Hubbard interaction.

FIG. 4 (color online). Temperature T� associated with ordering
versus μ and g for the forward-scattering limit. The crossover
lines shown correspond to asymptotic bounds for the phase
boundaries between excitonic (E), superconducting (SC), and
Fermi liquid (FL) states.
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purity samples have started showing signatures of excitonic
ordering, a further increase in sample purity may be a
promising avenue towards achieving SC.
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